Экстремальные задачи (3), (4) обладают важными свойствами.
Теорема 1. Пусть выполнено (2). Тогда задача (3) однозначно разрешима при всяком
Теорема 2. Если выполнено (2), то решение задачи (4) конечно, и при каждом
Теорема 3. Если
Сходимость приближенных решений устанавливает
Теорема 4. Если выполнено условие (2), то
Введем множество
Теорема 5. При выполнении условий (2) метод (3), (4) гарантирует при любом р>0 оптимальный порядок точности приближенного решения для задач (1), у которых
Рассмотрим случай, когда оператор А – вполне непрерывный. Тогда множество
Отметим теперь следующий тривиальный результат.
Теорема 6. Если в дополнение к условиям теоремы 5 известны, что оператор А нормально разрешим, то алгоритм (3), (4) при любом р > 0 дает точность
5. Из теорем 5,6 следует, что алгоритм (3), (4), не используя данных о степени р истокообразной представимости элемента
Определение. Регуляризирующий алгоритм называется адаптивным для задач (1) с решениями из некоторого семейства множеств {
Примером адаптивного РА служит алгоритм (3), (4). Имеются и другие адаптивные РА, для которых справедливы такие же результаты, как в теоремах 4-6. К числу таких РА относятся специализированный метод регуляризации А.Н. Тихонова, эквивалентный методу (3), (4), специализированный метод квазирешений, получаемый из обычного метода квазирешений [5] по схеме, которая использована в методе (3), (4). Все эти адаптивные алгоритмы были программно реализованы в системе MATLAB и показали свою высокую эффективность в численных эксперементах.
6. Остановимся особо на случае, когда при выполнении условий (2) степень истокопредсавимости р точного решения задачи (1) известна. Тогда нет необходимости использовать величину r. В качестве приближения к
Справедлива
Теорема 7. Гарантированы сильные сходимости:
Кроме специализированного метода невязки, адаптивными являются также и некоторые другие регуляризующие алгоритмы. Сформулируем и кратко обсудим важнейшие из них.
Специализированный метод регуляризации А. Н. Тихонова.Он основан на решении следующей параметрической задачи: при фиксированном β > 0 и при заданном параметре α>0 найти элемент
Алгоритм этого метода состоит из таких шагов: 1) выбор параметра регуляризации α(δ,β)>0 для каждого β > 0 по (обобщенному) принципу невязки , то есть как решение уравнения
2)использование элементов
3) принятие в качестве приближения к
Теорема 8.Элемент
Доказательство . Существование единственного решения задачи (5.1) следует из общей теории метода регуляризации линейных некорректных задач в гильбертовых пространствах. Существование и единственность параметра регуляризации
В силу установленной в теореме 4.1 эквивалентности алгоритмов специализированного метода регуляризации и специализированного метода невязки для первого из них справедливы те же результаты о сходимости и оптимальности порядка точности приближений, что и для второго. Это можно суммировать так.
Теорема 9.Пусть выполнены условия (2). Тогда для величин