Смекни!
smekni.com

Правильные многогранники 2 (стр. 2 из 6)

т.е. k = 3, 4, 5.

Если k = 3, n = 3, то P = 6, Г =

В =
- это тетраэдр (см. табл. 1).

Если k = 4, n = 3, то Р = 12, Г =

, В =
- это октаэдр.

Если k = 5, n = 3, то Р = 30, Г =

В =
- это икосаэдр.

Пусть теперь k = 3, тогда равенство (*) примет вид:

, или

Отсюда следует, что n может принимать значения 3, 4, 5.

Случай n = 3 разобран.

Остаются два случая:

n = 4 при k = 3, тогда

, т.е. Р = 12, Г =
, В =
- это куб.

n = 5 при k = 3, тогда

, Р = 30, Г = 12, В = 30 - это додекаэдр.

Вот мы и доказали, что существует, пять и только пять правильных выпуклых многогранников. Доказательство того, что больше не может быть, содержится в «Началах» Эвклида, причем автором этого доказательства считается Теэтет. Известно, что в течение нескольких лет Теэтет состоял в Академии и был близок к Платону, и этой близостью можно объяснить то обстоятельство, что Платон оказался знакомым с новейшими в то время открытиями в области стереометрии.

4. Числовые характеристики Платоновых тел.

Основными числовыми характеристиками Платоновых тел является число сторон грани m, число граней n, сходящихся в каждой вершине, число граней Г, число вершин В, число ребер Р и число плоских углов У на поверхности многогранника (табл. 1).

Многогран-ник Число сторон грани, m Число граней, сходящихся в вершине, n

Число граней

Г

Число вершин

В

Число ребер

Р

Число плоских углов на поверхности

У

Тетраэдр 3 3 4 4 6 12
Гексаэдр (куб) 4 3 6 8 12 24
Октаэдр 3 4 8 6 12 24
Икосаэдр 3 5 20 12 30 60
Додекаэдр 5 3 12 20 30 60

Таблица 1. Числовые характеристики Платоновых тел.

Рассматривая табл. 1, зададимся вопросом: «нет ли закономерности в возрастании чисел в каждом столбцах граней, вершин и ребер?» По-видимому, нет. Вот в столбце «грани» все сначала пошло хорошо (4 + 2 = 6, 6 + 2 = 8), а потом намеченная закономерность «провалилась» (8 + 2

). В столбце «вершины» нет даже стабильного возрастания. Число вершин то возрастает (от 4 до 8, от 6 до 20), а то и убывает (от 8 до 6, от 20 до 12). В столбце «ребра» закономерности тоже не видно.

Мы сравнивали числа внутри одного столбца. Но можно рассмотреть сумму чисел в двух столбцах, хотя бы в столбцах «грани» и «вершины» (Г + В). Сравним новую таблицу своих подсчетов (см. табл. 2).

Таблица 2

Правильный

многогранник

Число
Граней и вершин (Г + В) Ребер (Р)
ТетраэдрКубОктаэдрДодекаэдрИкосаэдр

4 + 4 = 8

6 + 8 = 14

8 + 6 = 14

12 + 20 = 32

20 + 12 = 32

612123030

Вот теперь закономерность видна.

Сформулируем ее так: «Сумма числа граней и вершин равна числу ребер, увеличенному на 2»: Г + В = Р + 2.

Итак, получена формула, которая была подмечена уже Декартом в 1640 году, а позднее переоткрыта Эйлером (1752), имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников.

Итак, получена формула, которая была подмечена уже Декартом в 1640 году, а позднее переоткрыта Эйлером (1752), имя которого с тех пор она и носит. Формула Эйлера верна для любых выпуклых многогранников.

Элементы симметрии:

Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности:

,

Объем тетраэдра:

.

Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности куба:

S=a²,

Объемкуба:

V=a³.

Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности:

,

Объем октаэдра:

.

Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности:

,

Объем икосаэдра:

.

Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Радиус описанной сферы:

,

Радиус вписанной сферы:

,

Площадь поверхности:

,

Объем додекаэдра:

.

5. Теория Кеплера.

В Европе в XYI – XYII вв. жил и творил замечательный немецкий астроном, математик и великий фантазер Иоганн Кеплер (1571-1630).

Кеплер действительно выступал в науке как астроном, математик и фантазер. Если бы в нем не было хотя бы одного из названных качеств, то он не смог бы достичь таких высот в науке.

На основе обобщения данных, полученных в результате наблюдений, он установил три закона движения планет относительно Солнца.

Первый закон: каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

Второй закон: каждая планета движется в плоскости, проходящей через центр Солнца, причем площадь сектора орбиты, описанная радиус-вектором, изменяется пропорционально времени.

Третий закон: квадраты времени обращения планеты вокруг Солнца относятся, как кубы их средних расстояний от Солнца.

Но это были только гипотезы, пока их не объяснил и уточнил на основе закона всемирного тяготения Исаак Ньютон (1643-1727), создавший теорию движения небесных тел, которая доказала свою жизнеспособность тем, что с ее помощью люди научились предсказывать многие небесные явления.

Но представим себя на месте Кеплера. Перед ним различные таблицы–столбики цифр. Это результаты наблюдений – как его собственных, так и великих предшественников-астрономов. В этом море вычислительной работы человек хочет найти некоторую закономерность. Что поддерживает его в таком грандиозном замысле? Во-первых, вера в гармонию, уверенность в том, что мироздание устроено закономерно, а значит, законы его устройства можно обнаружить. А во-вторых, фантазия в сочетании с терпением и честностью. В самом деле, ну надо же от чего-то оттолкнуться! Искомые законы надо сначала придумать в собственной голове, а потом проверять их наблюдениями.