Смекни!
smekni.com

Методы решения уравнений линейной регрессии (стр. 2 из 3)

Схема критерия:


2,995

(2,67; 3,57), значит, для построенной модели свойство нормального распределения остаточной компоненты выполняется.

Проведенная проверка предпосылок регрессионного анализа показала, что для модели выполняются все условия Гаусса–Маркова.

4. Осуществить проверку значимости параметров уравнения регрессии с помощью t–критерия Стьюдента (

).

t–статистика для коэффициентов уравнения приведены в таблице 4.

Для свободного коэффициента

определена статистика
.

Для коэффициента регрессии

определена статистика
.

Критическое значение

найдено для уравнения значимости
и числа степеней свободы
с помощью функции СТЬЮДРАСПОБР.

Схема критерия:

Сравнение показывает:

, следовательно, свободный коэффициент a является значимым.

, значит, коэффициент регрессии b является значимым.

5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F–критерия Фишера (

), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве модели.

Коэффициент детерминации R–квадрат определен программой РЕГРЕССИЯ и составляет

.

Таким образом, вариация объема выпуска продукции Y на 79,5% объясняется по полученному уравнению вариацией объема капиталовложений X.

Проверим значимость полученного уравнения с помощью F–критерия Фишера.

F–статистика определена программой РЕГРЕССИЯ (таблица 2) и составляет

.

Критическое значение

найдено для уровня значимости
и чисел степеней свободы
,
.

Схема критерия:

Сравнение показывает:

; следовательно, уравнение модели является значимым, его использование целесообразно, зависимая переменная Y достаточно хорошо описывается включенной в модель факторной переменной Х.

Для вычисления средней относительной ошибки аппроксимации рассчитаем дополнительный столбец относительных погрешностей, которые вычислим по формуле

с помощью функции ABS (таблица 5).



ВЫВОД ОСТАТКА
Наблюдение Предсказанное Y Остатки Отн. Погр-ти
1 27,14150943 6,858490566 20,17%
2 29,30660377 -3,306603774 12,72%
3 30,02830189 -6,028301887 25,12%
4 35,08018868 2,919811321 7,68%
5 35,80188679 -0,801886792 2,29%
6 40,13207547 -0,132075472 0,33%
7 45,90566038 -3,905660377 9,30%
8 45,90566038 5,094339623 9,99%
9 46,62735849 -1,627358491 3,62%
10 48,07075472 0,929245283 1,90%

По столбцу относительных погрешностей найдем среднее значение

(функция СРЗНАЧ).

Схема проверки:

Сравним: 9,31% < 15%, следовательно, модель является точной.

Вывод: на основании проверки предпосылок МНК, критериев Стьюдента и Фишера и величины коэффициента детерминации модель можно считать полностью адекватной. Дальнейшее использование такой модели для прогнозирования в реальных условиях целесообразно.

6. Осуществить прогнозирование среднего значения показателя Y при уровне значимости

, если прогнозное значение фактора X составит 80% от его максимального значения.

Согласно условию задачи прогнозное значение факторной переменной Х составит 80% от 49, следовательно,

. Рассчитаем по уравнению модели прогнозное значение показателя У:

.

Таким образом, если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции составит около 48 млн. руб.

Зададим доверительную вероятность

и построим доверительный прогнозный интервал для среднего значения Y.

Для этого нужно рассчитать стандартную ошибку прогнозирования:

Предварительно подготовим:

- стандартную ошибку модели

(Таблица 2);

- по столбцу исходных данных Х найдем среднее значение

(функция СРЗНАЧ) и определим
(функция КВАДРОТКЛ).

Следовательно, стандартная ошибка прогнозирования для среднего значения составляет:

При

размах доверительного интервала для среднего значения

Границами прогнозного интервала будут

Таким образом, с надежностью 90% можно утверждать, что если объем капиталовложений составит 39,2 млн. руб., то ожидаемый объем выпуска продукции будет от 45,3 млн. руб. до 50,67 млн. руб.

7. Представить графически фактические и модальные значения Y точки прогноза.

Для построения чертежа используем Мастер диаграмм (точечная) – покажем исходные данные (поле корреляции).

Затем с помощью опции Добавить линию тренда… построим линию модели:

тип → линейная; параметры → показывать уравнение на диаграмме.

Покажем на графике результаты прогнозирования. Для этого в опции Исходные данные добавим ряды:

Имя → прогноз; значения

; значения
;

Имя → нижняя граница; значения

; значения
;

Имя → верхняя граница; значения

; значения

8. Составить уравнения нелинейной регрессии: гиперболической; степенной; показательной.

8.1 Гиперболическая модель

Уравнение гиперболической функции:


= a + b/x.

Произведем линеаризацию модели путем замены X = 1/x. В результате получим линейное уравнение

= a + bX.

Рассчитаем параметры уравнения по данным таблицы 2.

b =

=

а =

=38,4+704,48*0,03=60,25.

Получим следующее уравнение гиперболической модели:

= 60,25-704,48/х.

8.2 Степенная модель

Уравнение степенной модели имеет вид:

=аxb

Для построения этой модели необходимо произвести линеаризацию переменных. Для этого произведем логарифмирование обеих частей уравнения: