Весьма важным для оценки точности определения зависимой переменной (прогноза) является построение доверительного интервала для функции регрессии или для условного математического ожидания зависимой переменной
Обобщая соответствующие выражения на случай множественной регрессии, можно получить доверительный интервал для
где
ее стандартная ошибка.
При обобщении формул (2.15) и (2.14) аналогичный доверительный интервал для индивидуальных значений зависимой переменной
где
Доверительный интервал для дисперсии возмущений
Формально переменные, имеющие незначимые коэффициенты регрессии, могут быть исключены из рассмотрения. В экономических исследованиях исключению переменных из регрессии должен предшествовать тщательный качественный анализ. Поэтому может оказаться целесообразным все же оставить в регрессионной модели одну или несколько объясняющих переменных, не оказывающих существенного (значимого) влияния на зависимую переменную.
Под мултиколлинеарностью понимается высокая взаимная коррелированностъ объясняющих переменных. Мультиколлинеарность может проявляться в функциональной (явной) стохастической (скрытой) формах. При функциональной форме мультиколлинеарности по крайней мере одна из парных связей между объясняющими переменными является линейной функциональной зависимостью. В этом случае матрица Х'Х особенная, так как содержит линейно зависимые векторы-столбцы и ее определитель равен нулю, т.е. нарушается предпосылка 6 регрессионного анализа. Это приводит к невозможности решения соответствующей системы нормальных уравнений и получения оценок параметров регрессионной модели.
Однако в экономических исследованиях мультиколлинеарность чаще проявляется в стохастической форме, когда между хотя бы двумя объясняющими переменными существует тесная корреляционная связь. Матрица Х'Х в этом случае является неособенной, но ее определитель очень мал. В то же время вектор оценок b и его ковариационная матрица К в соответствии с формулами пропорциональны обратной матрице
Оценки
Многомерный статистический анализ определяется как раздел математической статистики, посвященный математическим методам построения оптимальных планов сбора, систематизации и обработки многомерных статистических данных, направленных на выявление характера и структуры взаимосвязей между компонентами исследуемого признака и предназначенных для получения научных и практических выводов. Многомерные статистические методы среди множества возможных вероятностно-статистических моделей позволяют обоснованно выбрать ту, которая наилучшим образом соответствует исходным статистическим данным, характеризующим реальное поведение исследуемой совокупности объектов, оценить надежность и точность выводов, сделанных на основании ограниченного статистического материала. С некоторыми разделами многомерного статистического анализа, такими, как многомерный корреляционный анализ, множественная регрессия, многомерный дисперсионный анализ. Приведем теперь краткий обзор ряда других методов многомерного статистического анализа, которые уже нашли отражение в статистических пакетах прикладных программ. В первую очередь следует выделить методы, позволяющие выявить общие (скрытые или латентные) факторы, определяющие вариацию первоначальных факторов. К ним относятся факторный анализ и метод главных компонент.