2) Отмечается, что передвижение из точки минимума в любом направлении увеличивает функцию, другими словами, что f(x+ε) и f(x
3) Если ε очень мало, то
f(x+ε)
Одно из этих выражений больше f(x), а другое меньше, если только f (х) не обращается в нуль. Но в силу 2) этого быть не может, следовательно в точке минимума производная функция должна исчезать.
Конечно, этого одного недостаточно. Напомним, что условие 3) необходимо также для максимума, и до тех пор пока мы не рассмотрели вторую произ-водную, нельзя узнать, что именно мы получили.
Однако это все, что нужно для наших целей.
Мы решим нашу задачу путем совершенно аналогичным.
1) Предполагаем, что искомая кривая известна и что ее уравнение есть
y=f(x).
2) Если будем менять форму кривой произвольно, то площадь поверхности вращения должна при этом увеличиваться. Если обозначить разность между ординатами новой и старой кривых через ε(x), то новое уравнение будет:
y = f(x) + ε(x).
3) Можно показать, что если некоторое дифференциальное выражение не равно нулю, то площадь, описанная кривой f(х)+ε(х), будет больше площади, описанной кривой f(x), а площадь, описанная кривой f(х)
После того как мы наметили таким образом нашу задачу, приступим к детальному проведению третьего шага. Прежде всего нужна написать выражение для площади поверхности вращения. Это- простая задача анализа, ответом на которую служит выражение:
Заменим теперь y = f(x) новой кривой
y = f(x) + ε(x).
При вращении этой кривой получим площадь:
Если ε есть малое изменение у, и выбрано так, что ε тоже мало, то
а следовательно:
Члены, не написанные в (1), содержат степени ε порядка выше первого и могут быть поэтому отброшены. Если dA не равно нулю, то оно меняет знак при изменении знака е. Это означает, что площадь поверхности вращения для новой кривой меньше, чем для самой кривой, что, конечно, противоречит предположению, что она давала наименьшую площадь. Отсюда dA должно обращаться в нуль.
Уравнение (1) является в некотором смысле эквивалентным выражению εf(х) для случая анализа. Однако между ними есть существенная разница. В дифференциальном исчислении ε входит только множителем, и поэтому произведение могло равняться нулю только при исчезновении второго множителя. Для уравнения (1) в этой его форме мы не можем этого утверждать. Оно должно быть так изменено, чтобы исчезло
Оставляем первый интеграл без изменения, а второй интегрируем по частям:
Так как условия задачи требуют, чтобы каждая интегральная кривая проходила через точки А и В, то ε(х) должно исчезать для обоих пределов интеграции. Поэтому первый член правой части равенства (2) обращается в нуль. Подстановка оставшегося члена в уравнение (1) дает искомое необходимое условие минимума в виде:
Теперь, как в случае дифференциального исчисления εf(x), подинтегральная функция состоит из двух множителей: ε(x), которое произвольно, и выражения в скобках, содержащего только f(x) и ее производные. Так же как и в случае задачи дифференциального исчисления, последние фактор должен обратиться в нуль. Действительно, предположим обратное. Тогда в некоторых интервалах между
Уравнение это настолько просто, что его решение предоставляем читателю. Следует отметить, что это уравнение второго порядка и поэтому может удовлетворять двум граничным условиям. Так как в задаче даются как раз два граничных условия—точки А и В,—то наш результат вполне соответствует поставленной задаче.
Особенный исторический интерес имеет так называемая задача Дидоны. По преданию, Дидона, попав в немилость своему брату Пигмалиону, собрала все деньги, какие могла, и убежала на южный берег Средиземного моря. Там она заключила сделку с царем Иарбасом на покупку такого количества земли, сколько можно было отмерить при помощи шкуры вола.
С остроумием и хитростью, которых всегда достаточно в мифологии, она разрезала кожу на тонкие ремешки, связала их друг с другом и окружила при помощи их место Карфагена. С характерной для финикиян настойчивостью в достижении поставленной цели, она не соединила концы, а поместила их на берегу моря. Задумав свой блестящий план, она встретилась с задачей, каким образом так расположить ремень, чтобы охватить им наивыгоднейшую часть земли, которая может быть максимальной или нет, в зависимости от обстоятельств.
Задача Дидоны состоит, таким образом, в следующем: задана кривая (берег моря), известна цена земли (изменяющаяся с изменением места); как провести кривую заданной длины, чтобы стоимость площади между этими двумя кривыми была максимальной?
Чтобы иллюстрировать метод изучения изопериметрических задач, решим задачу Дидоны для простейшего случая, именно предположим, что земля имеет всюду одинаковую ценность и что берег моря прямолинейный. Кроме того предположим, что концы веревки помещены в две заданные точки, расстояние между которыми равно X[7]. Задача сводится к определению кривой заданной длины, ограничивающей максимальную площадь.
Следовательно, эта кривая удовлетворяет двум условиям, изложенным на ее длину и на площадь, которую она ограничивает. Выбирая берег моря за ось х и помещая один из концов веревки в начало координат, мы можем записать эти условия в виде равенств:
Первый интеграл имеет заданное значение, второй должен быть сделан наибольшим, путем выбора соответствующей функции f(x).
Пусть искомая кривая, удовлетворяющая поставленным требованиям, имеет уравнение у=f(x), длина ее равна
Очевидно, нельзя уже сказать, что
Для этой цели рассмотрим вместо кривой Дидоны длины
Вернемся теперь к произвольной кривой сравнения у =f(x) + ε(x), и пусть эта кривая имеет длину L0 + dL, большую, меньшую или равную Lo. Обозначим через Ао + dA площадь, ограниченную этой новой кривой. Какова бы ни была эта площадь, она не может быть больше A0 + λdL, так как по предположению это—максимальная площадь, для кривой длины Lo + dL. Отсюда следует, что
dA