Известно [5], что ограничение суммирования в (5.1) приводит к функции
, хотя и отличной от , но это отличие, оцениваемое по среднеквадратической погрешности , (5.12)будет минимально, если коэффициенты в (4.1) рассчитываются по прежним формулам (4.2). Данный факт говорит о том, что вынужденное на практике ограничение числа определяемых коэффициентов
не должно привести к изменению тех формул, по которым они рассчитываются.С увеличением числа
- членов суммы (5.11) погрешность (5.12) монотонно уменьшается. Важно подчеркнуть, что это происходит только тогда, когда коэффициенты известны точно. Если же они определяются с некоторыми ошибками, то отмеченная зависимость нарушается. В этом случае конкретный характер поведения погрешности (5.12) с ростом числа М во многом определяется статистикой ошибок измерения. В результате уменьшение усредненной погрешности за счет увеличения числа членов суммы(5.11) может происходить только до некоторого предела, после которого она начинает увеличиваться. Более того, часто при бесконечном увеличении числа слагаемых погрешность стремится к бесконечности. Таким образом, вторая причина, связанная с неточностью определения коэффициентов , так же, как и первая, приводит к необходимости использовать при восстановлении ограниченное число членов ряда (5.1), но в отличие от первой она указывает на то, что это ограничение возможно осуществить оптимальным образом. В данном случае не требуется регуляризации в том виде, в каком она была введена ранее. Ее роль как «сознательного ограничителя точности в идеальных условиях» будет выполнять «сознательное», оптимальное ограничение числа членов аппроксимирующих полиномов для данного уровня шумовых флуктуаций.ЛИТЕРАТУРА
1. Гельфанд, И.М. Интегральная геометрия и связанные с ней вопросы теории представлений [Текст]: монография / И.М Гельфанд, М.И. Граев, Н.Я. Виленкин. - М.: Физматгиз, 1962. - 656 с.
2. Календер, В. Компьютерная томография. Основы, техника, качество изображения и области клинического использования [Текст]: монография / В. Календер. - М.: Техносфера, 2006, -344 с.
3. Терещенко С.А. Методы вычислительной томографии [Текст]: монография /С.А.Терещенко. – М.: Физматлит, 2004. - 319 с.
4. Наттерер Ф. Математические аспекты компьютерной томографии: Пер. с англ. [Текст]: монография /Ф. Наттерер. -М.: Мир, 1990.-288 с.
5. Хелгасон, С. Преобразование Радона: Пер. с англ. [Текст]: монография / С. Хелгасон. - М.: Мир, 1983. - 152 с.
6. Хермен, Г. Восстановление изображений по проекциям: основы реконструктивной томографии: Пер. с англ. [Текст]: монография / Г. Хермен. - М.: Мир, 1983. - 349 с.
7. Троицкий, И.Н. Статистическая теория томографии [Текст]: монография / И.Н.Троицкий. – М.: Радио и связь, 1989. - 240 с.
8. Тихонов, А.Н. Методы решения некорректных задач. [Текст]: монография / А.Н. Тихонов, В.Я. Арсенин. - М.:Наука, 1986. - 287 с.
9. Гельфанд, И.М. Обобщенные функции и действия над ними [Текст]: монография / И.М. Гельфанд, Г.Е. Шилов. - М.: Физматгиз, 1959. - 497 с.
ПРИЛОЖЕНИЕ А
Чтобы вычислить (2.9), воспользуемся соотношением [9]
, (A1)где
- простые корни уравнения , - их число.Пусть
. Тогда , , ,так что
. Подстановка (А1) в (2.9) дает = = , (А2)где при переходе к последнему равенству было учтено, что
.ПРИЛОЖЕНИЕ Б
Убедиться в справедливости (2.24) можно, если воспользоваться (2.8) и под интеграл в (2.17) вместо
подставить , затем сделать замену переменных .