Проверка адекватности выбранных моделей
Проверка адекватности выбранных моделей реальному процессу ( в частности, адекватности полученной кривой роста) строится на анализе случайной компоненты. Случайная остаточная компонента получается после выделения из исследуемого ряда систематической составляющей (тренда и периодической составляющей, если она присутствует во временном ряду). Предположим, что исходный временной ряд описывает процесс, не подверженный сезонным колебаниям, т.е. примем гипотезу об аддитивной модели ряда вида:
(1)Тогда ряд остатков будет получен как отклонения фактических уровней временного ряда (yt) от выравненных, расчетных (ŷt):
(2)При использовании кривых роста ŷt вычисляют, подставляя в уравнения выбранных кривых соответствующие последовательные значения времени.
Принято считать, что модель адекватна описываемому процессу, если значения остаточной компоненты удовлетворяют свойствам случайности, независимости, а также случайная компонента подчиняется нормальному закону распределения.
При правильном выборе вида тренда отклонения от него будут носить случайный характер. Это означает, что изменение остаточной случайной величины не связано с изменением времени. Таким образом, по выборке, полученной для всех моментов времени на изучаемом интервале, проверяется гипотеза о зависимости последовательности значений et от времени, или, что то же самое, о наличии тенденции в ее изменении. Поэтому для проверки данного свойства может быть использован один из критериев, рассматриваемых в разделе 1, например, критерий серий.
Если вид функции, описывающей систематическую составляющую, выбран неудачно, то последовательные значения ряда остатков могут не обладать свойствами независимости, т.к. они могут коррелировать между собой. В этом случае говорят, что имеет место автокорреляция ошибок.
В условиях автокорреляции оценки параметров модели, полученные по методу наименьших квадратов, будут обладать свойствами несмещенности и состоятельности (с этими свойствами знакомятся в курсе математической статистики). В то же время эффективность этих оценок будет снижаться, а, следовательно, доверительные интервалы будут иметь мало смысла в силу своей ненадежности.
Существует несколько приемов обнаружения авто корреляции. Наиболее распространенным является метод, предложенный Дарбиным и Уотсоном. Критерий Дарбина-Уотсона связан с гипотезой о существовании автокорреляции первого порядка, Т.е. автокорреляции между соседними остаточными членами ряда. Значение этого критерия определяется по формуле:
d =
(3)Можно показать, что величина d приближенно равна:
d≈ 2(1-r1)
где r1- коэффициент автокорреляции первого порядка (т.е. парный коэффициент корреляции между двумя рядами е1, е2, ... ,еn-1 и е2, е3,…,en).
Из последней формулы видно, что если в значениях et имеется сильная положительная авто корреляция ( r1≈1), то величина d=0, в случае сильной отрицательной автокорреляции (r1≈-1) d=4. При отсутствии автокорреляции (r≈0) d=2.
Для этого критерия найдены критические границы, позволяющие принять или отвергнуть гипотезу об отсутствии автокорреляции. Авторами критерия границы определены для 1; 2,5; и 5% уровней значимости. Значения критерия Дарбина- Уотсона при 5% уровне значимости приведены в таблице. В этой таблице d1 и d2 – соответственно нижняя и верхняя доверительные границы критерия Дарбина- Уотсона; k1 – число переменных в модели; n- длина ряда.
Таблица.
Значение критерия Дарбина- Уотсона d1 и d2 при 5% уровне значимости
n | K1=1 | K1=2 | K1=2 | |||
d1 | d2 | d1 | d2 | d1 | d2 | |
15161718192021222324252627282930313233343536 | 1.081.11.131.161.181.21.221.241.261.271.291.31.321.331.341.351.361.371.381.491.41.41 | 1.361.371.381.391.41.411.421.431.441.451.451.461.471.481.481.491.51.51.511.511.521.52 | 0.950.981.021.051.081.11.131.151.171.191.211.221.241.261.271.281.31.311.321.331.341.35 | 1.541.541.541.531.531.541.541.541.541.551.551.551.561.561.561.571.571.571.581.581.581.59 | 0.820.860.90930.9711.031.051.081.11.121.141.161.181.21.211.231.241.261.271.281.29 | 1.751.731.711.691.681.681.671.661.661.661.661.651.651.651.651.651.651.651.651.651.651.65 |
Применение на практике критерия Дарбина- Уотсона основано на сравнении величины d, рассчитанной по формуле (3), с теоретическими значениями d1 иd2 , взятыми из таблицы. Отметим, что большинство программных пакетов статистической обработки данных осуществляет расчет этого критерия (например, ППП "Олимп", "Мезозавр", "Statistica" и др.).
При сравнеии величины d с d1 и d2 возможны следующие варианты:
1) Если d<d1, то гипотеза о независимости случайных отклонений (отсутствие автокорреляции) отвергается;
2) Если d>d2 , то гипотеза о независимости случайных отклонений не отвергается;
3) Если d1≤d≤d2, то нет достаточных оснований для принятия решений, т.е. величина попадает в область "неопределенности" .
Рассмотренные варианты относятся к случаю, когда в остатках имеется положительная автокорреляция.
Когда же расчетное значение d превышает 2, то можно говорить о том, что в etсуществует отрицательная автокорреляция.
Для проверки отрицательной автокорреляции с критическими значениями dj и d2 сравнивается не сам коэффициент d, а 4-d.
Для определения доверительных интервалов модели свойство
нормальности распределения остатков имеет важное значение. Поскольку временные ряды экономических показателей, как правило, невелики (<50), то проверка распределения на нормальность может быть произведена лишь приближенно, например, на основе исследования показателей асимметрии и эксцесса.
При нормальном распределении показатели асимметрии (А) и эксцесса (Э) равны нулю. Так как мы предполагаем, что отклонения от тренда представляют собой выборку из некоторой генеральной совокупности, то можно определить выборочные характеристики асимметрии и эксцесса, а также их среднеквадратические ошибки.
А=
(4)Э=
(5)σa=
(7)где А- выборочная характеристика асимметрии;
Э- выборочная характеристика экцесса;
σА- среднеквадратическая ошибка выборочной характеристики асимметрии;
σЭ- среднеквадратическая ошибка выборочной характеристики экцесса.
Если одновременно выполняются следующие неравенства:
|А|<1,5σА; |
|<1,5σЭ (8)то гипотеза о нормальном характере распределения случайной компоненты не отвергается.
Если выполняется хотя бы одно из неравенств
|А|≥2σА; |Э+
| ≥2σ (9)то гипотеза о нормальном характере распределения отвергается.
Другие случаи требуют дополнительной проверки с помощью более мощных критериев.
Классификация прогнозов. Требования, предъявляемые к временным рядам, их компонентный состав
1. Изменения курса акций промышленной компании в течение месяца представлены в таблице:
курс акции (Дол.)
tYttYttYttYt
1 509 6 515 11 517 16 510
2 507 7 520 12 524 17 516
3 508 8 519 13 526 18 518
4 509 9 512 14 519 19 524
5 518 10 511 15 514 20 521
Проверить утверждение об отсутствии тенденции в изменении курса акций двумя способами:
а) с помощью метода Фостера - Стюарта;
б) используя критерий серии, основанный на медиане выборки. Доверительную вероятность принять равной 0,95.
2. Проверим гипотезу об отсутствии тенденции в изменении курса акций с помощью критерия серий, основанного на медиане выборки.
3. Годовые данные об изменении урожайности зерновых культу; представлены в таблице. С помощью критерия "восходящих и нисходящих" серий проверить утверждение о том, что в изменении урожайности имеется тенденция.
Урожайность зерновых культур (ц/га)
t | Yt | t | Yt | t | Yt | t | Yt |
1 | 6,7 | 6 | 8,6 | 11 | 8,4 | 16 | 9,1 |
2 | 7,3 | 7 | 7,8 | 12 | 9,1 | 17 | 9,5 |
3 | 7,6 | 8 | 7,7 | 13 | 8,3 | 18 | 10,4 |
4 | 7,9 | 9 | 7,9 | 14 | 8,7 | 19 | 10,5 |
5 | 7,4 | 10 | 8,2 | 15 | 8,9 | 20 | 10,2 |
21 | 9,3 |
Доверительную вероятность принять равной 0,95.
Решение
1. Вспомогательные вычисления по методу Фостера- Стюарта представлены в таблице 1.
1) Если уровень yt больше всех предшествующих уровней, то в графе mt ставим 1, если yt меньше всех предшествующих уровней, то ставим 1 в графе lt;
2) Определяем dt=mt-1t для t=2ч20;
3) D =
=3;4) Значение σdдля n=20 берем из таблицы 1.2.
σd =2,279.
Значение tкp берем из таблицы t- распределения Стьюдента:
tкp(а=О,05; К=19)=2,093; tH = =1,316.
TH< Tkр
нет оснований отвергнуть гипотезу об отсутствии тренда.