Смекни!
smekni.com

Правильные многогранники (стр. 1 из 3)

Определение правильного многогранника.

Определение. Многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) в каждой его вершине сходится одинаковое число ребер; 4) все его двугранные равны.

Примером правильного многогранника является куб: он является выпуклым многогранником, все его грани – равные квадраты, в каждой вершине сходятся три ребра, и все двугранные углы куба прямые. Правильный тетраэдр также является правильным многогранником.

Возникает вопрос: сколько существует различных типов правильных многогранников?

Пять типов правильных многогранников.

Рассмотрим произвольный правильный многогранник М, у которого В вершин, Р ребер и Г граней. По теореме Эйлера для этого многогранника выполняется равенство:

В - Р + Г = 2. (1)

Пусть каждая грань данного многогранника содержит m ребер (сторон), и в каждой вершине сходятся n ребер. Очевидно,

m
, n
. (2)

Так как у многогранника В вершин, и каждой из которых сходятся n ребер, то получаем n

ребер. Но любое ребро соединяет две вершины многогранника, поэтому в произведение n
каждое ребро войдет дважды. Значит у многогранника имеется
различных ребер. Тогда

= Р
В =
. (3)

Далее, в каждой грани многогранника М содержится m ребер, а число граней равно Г. Так как каждое ребро принадлежит двум смежным граням, то число различных ребер многогранника равно

. Тогда

Г=
. (4)

Из (1), (3), (4) получаем

- Р +
= 2, откуда

+
=
+
>
. (5)

Таким образом, имеем

Из неравенств 3

и 3
следует, что гранями правильного многогранника могут быть либо правильные треугольники, либо правильные четырехугольники, либо правильные пятиугольники. Причем в случаях m = n = 4; m= 4, n = 5; m = 5, n = 4; m = n = 5 приходим к противоречию с условием
. Поэтому остаются возможными пять случаев: 1) m = n = 3; 2) m = 4, n = 3; 3) m = 3, n = 4; 4) m = 5, n = 3; 5) m = 3, n = 5.

Рассмотрим каждый из этих случаев, используя соотношения (5), (4) и (3).

1) m = n = 3 (каждая грань многогранника – правильный треугольник. Это – известный нам правильный тетраэдртетраэдр» означает четырехгранник).

2) m = 4, n = 3 (каждая грань квадрат, и в каждой вершине сходятся три ребра). Имеем

Р = 12; В =
8; Г =
6.

Получаем правильный шестигранник, у которого каждая грань – квадрат. Этот многогранник называется правильным гексаэдром и является кубом («гексаэдр» -- шестигранник), любой параллелепипед – гексаэдр.

3) m = 3, n = 4 (каждая грань –правильный треугольник, в каждой вершине сходятся четыре ребра). Имеем

Р = 12; В =
=6; Г =
=8.

Получаем правильный восьмигранник, у которого каждая грань – правильный треугольник. Этот многогранник называется правильным октаэдром («октаэдр» -- восьмигранник).

4) m= 5, n= 3 (каждая грань – правильный пятиугольник, в каждой вершине сходятся три ребра). Имеем:

Р = 30; В =
= 20; Г =
= 12.

Получаем правильный двенадцатигранник, у которого каждая грань – правильный пятиугольник. Этот многогранник называется правильным додекаэдромдодекаэдр» -- двенадцатигранник).

5) m = 3,n = 5 (каждая грань – правильный треугольник, в каждой вершине сходятся пять ребер). Имеем

Р = 30; В =
=12; Г =
= 20.

Получаем правильный двадцатигранник. Этот многогранник называется правильным икосаэдром икосаэдр» - двадцатигранник).

Таким образом, мы получили следующую теорему.


Теорема. Существует пять различных ( с точностью до подобия) типов

правильных многогранников: правильный тетраэдр, правильный гексаэдр

(куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.

К этому заключению можно прийти несколько иначе.

Действительно, если грань правильного многогранника – правильный треугольник, и в одной вершине сходятся kребер, т.е. все плоский углы выпуклого k-гранного угла равны

, то
. Следовательно, натуральное число k может принимать значения: 3;4;5. при этом Г =
, Р =
. На основании теоремы Эйлера имеем: В+
-
= 2 или В
( 6 – k) = 12. Тогда

при k = 3 получаем: В = 4, Г = 4 , Р = 6 (правильный тетраэдр);\

при k = 4 получаем: В = 6, Г = 8, Р = 12 (правильный октаэдр);

при k = 5 получаем: В = 12, Г = 20, Р = 30 (правильный икосаэдр).

Если грань правильного многогранника – правильный четырехугольник , то

. Этому условию соответствует единственное натуральное число k = 3. Тогда: Г =
, Р=
; В +
-
= 2 или
. Значит, В = 8, Г = 6, Р = 12 – мы получаем куб (правильный гексаэдр).

Если гранью правильного многогранника является правильный пятиугольник, то

. Этому условию соответствует тоже только k= 3 и Г =
; Р =
. Аналогично предыдущим вычислениям получаем:
и В = 20, Г = 12, Р = 30 (правильный додекаэдр).

Начиная с правильных шестиугольников, предположительно являющихся гранями правильного многогранника, плоские углы становятся не меньше

, и уже k = 3 их сумма становится не менее
, что невозможно. Следовательно, существует всего пять видов правильных многогранников.