Определение правильного многогранника.
Определение. Многогранник называется правильным, если: 1) он выпуклый; 2) все его грани – равные друг другу правильные многоугольники; 3) в каждой его вершине сходится одинаковое число ребер; 4) все его двугранные равны.
Примером правильного многогранника является куб: он является выпуклым многогранником, все его грани – равные квадраты, в каждой вершине сходятся три ребра, и все двугранные углы куба прямые. Правильный тетраэдр также является правильным многогранником.
Возникает вопрос: сколько существует различных типов правильных многогранников?
Пять типов правильных многогранников.
Рассмотрим произвольный правильный многогранник М, у которого В вершин, Р ребер и Г граней. По теореме Эйлера для этого многогранника выполняется равенство:
В - Р + Г = 2. (1)
Пусть каждая грань данного многогранника содержит m ребер (сторон), и в каждой вершине сходятся n ребер. Очевидно,
m , n . (2)Так как у многогранника В вершин, и каждой из которых сходятся n ребер, то получаем n
ребер. Но любое ребро соединяет две вершины многогранника, поэтому в произведение n каждое ребро войдет дважды. Значит у многогранника имеется различных ребер. Тогда = Р В = . (3)Далее, в каждой грани многогранника М содержится m ребер, а число граней равно Г. Так как каждое ребро принадлежит двум смежным граням, то число различных ребер многогранника равно
. Тогда =Р Г= . (4)Из (1), (3), (4) получаем
- Р + = 2, откуда + = + > . (5)Таким образом, имеем
Из неравенств 3
и 3 следует, что гранями правильного многогранника могут быть либо правильные треугольники, либо правильные четырехугольники, либо правильные пятиугольники. Причем в случаях m = n = 4; m= 4, n = 5; m = 5, n = 4; m = n = 5 приходим к противоречию с условием . Поэтому остаются возможными пять случаев: 1) m = n = 3; 2) m = 4, n = 3; 3) m = 3, n = 4; 4) m = 5, n = 3; 5) m = 3, n = 5.Рассмотрим каждый из этих случаев, используя соотношения (5), (4) и (3).
1) m = n = 3 (каждая грань многогранника – правильный треугольник. Это – известный нам правильный тетраэдр («тетраэдр» означает четырехгранник).
2) m = 4, n = 3 (каждая грань квадрат, и в каждой вершине сходятся три ребра). Имеем
Р = 12; В = 8; Г = 6.Получаем правильный шестигранник, у которого каждая грань – квадрат. Этот многогранник называется правильным гексаэдром и является кубом («гексаэдр» -- шестигранник), любой параллелепипед – гексаэдр.
3) m = 3, n = 4 (каждая грань –правильный треугольник, в каждой вершине сходятся четыре ребра). Имеем Р = 12; В = =6; Г = =8.Получаем правильный восьмигранник, у которого каждая грань – правильный треугольник. Этот многогранник называется правильным октаэдром («октаэдр» -- восьмигранник).
4) m= 5, n= 3 (каждая грань – правильный пятиугольник, в каждой вершине сходятся три ребра). Имеем:
Р = 30; В = = 20; Г = = 12.Получаем правильный двенадцатигранник, у которого каждая грань – правильный пятиугольник. Этот многогранник называется правильным додекаэдром («додекаэдр» -- двенадцатигранник).
5) m = 3,n = 5 (каждая грань – правильный треугольник, в каждой вершине сходятся пять ребер). Имеем
Р = 30; В = =12; Г = = 20.Получаем правильный двадцатигранник. Этот многогранник называется правильным икосаэдром («икосаэдр» - двадцатигранник).
Таким образом, мы получили следующую теорему.
Теорема. Существует пять различных ( с точностью до подобия) типов
правильных многогранников: правильный тетраэдр, правильный гексаэдр
(куб), правильный октаэдр, правильный додекаэдр и правильный икосаэдр.
К этому заключению можно прийти несколько иначе.
Действительно, если грань правильного многогранника – правильный треугольник, и в одной вершине сходятся kребер, т.е. все плоский углы выпуклого k-гранного угла равны
, то . Следовательно, натуральное число k может принимать значения: 3;4;5. при этом Г = , Р = . На основании теоремы Эйлера имеем: В+ - = 2 или В ( 6 – k) = 12. Тогдапри k = 3 получаем: В = 4, Г = 4 , Р = 6 (правильный тетраэдр);\
при k = 4 получаем: В = 6, Г = 8, Р = 12 (правильный октаэдр);
при k = 5 получаем: В = 12, Г = 20, Р = 30 (правильный икосаэдр).
Если грань правильного многогранника – правильный четырехугольник , то
. Этому условию соответствует единственное натуральное число k = 3. Тогда: Г = , Р= ; В + - = 2 или . Значит, В = 8, Г = 6, Р = 12 – мы получаем куб (правильный гексаэдр).Если гранью правильного многогранника является правильный пятиугольник, то
. Этому условию соответствует тоже только k= 3 и Г = ; Р = . Аналогично предыдущим вычислениям получаем: и В = 20, Г = 12, Р = 30 (правильный додекаэдр).Начиная с правильных шестиугольников, предположительно являющихся гранями правильного многогранника, плоские углы становятся не меньше
, и уже k = 3 их сумма становится не менее , что невозможно. Следовательно, существует всего пять видов правильных многогранников.