Смекни!
smekni.com

Линейные регрессионные модели (стр. 1 из 4)

Решение контрольной работы по эконометрике

Используя данные Федеральной службы государственной статистики России (за двенадцать месяцев) из периода 2004 - 2005гг., следует:

1. Оценить влияние факторов (X1, X2, X3, X4, X5, X6, X7, X8) на изучаемый показатель (Y) и друг на друга с помощью коэффициентов линейной корреляции

Таблица 1.

в% к предыдущему периоду индексы цен платных услуг индексы цен производителей добыча полезных ископаемых обрабатывающие производства производство и распределение электроэнергии газа и воды индексы тарифов на грузовые перевозки железнодорожный транспорт автомобильный транспорт трубопроводный транспорт
Y X1 X2 X3 X4 X5 X6 X7 X8
ицпу пр дпи оп прэгв гп жт ат тт
июл.04 101,3 101,2 102,9 100,7 100,1 102,1 100 101,3 105
авг.04 101 101,8 103,9 101,4 100,2 100,2 100 100,4 100
сен.04 100,6 103,1 105 103,1 100 100,3 100 101,9 100,6
окт.04 101,2 101,8 103,6 101,4 99,9 95,4 100 101,5 87,4
ноя.04 100,8 102 104,5 101,5 100 100,7 100 101,9 101,1
дек.04 101 100,1 100,8 99,8 99,9 102,1 100 100,6 105,8
янв.05 108,8 100,5 95,7 100,9 104,9 113,9 108,8 103,2 122,6
фев.05 102,2 101,3 98,4 100,9 106,3 100,1 100 100,8 100,1
мар.05 101,2 102,5 109,6 101 100,3 100 100 100,3 99,9
апр.05 100,8 102,5 108,9 101,1 100,3 103,5 100 101 107,7
май.05 100,8 102,7 109,7 101 100,1 100,3 100 100,5 100
июн.05 100,9 100,1 99,3 100,3 100,1 101,7 100 100,6 103,7

Коэффициент линейной корреляции, с помощью которого можно оценить влияние факторов (X1, X2, X3, X4, X5, X6, X7, X8) на изучаемый показатель (Y) и друг на друга, вычисляется по формуле:

,

где

- среднее квадратическое отклонение фактора
.

- среднее квадратическое отклонение изучаемого показателя
. Если
=0, то факторы не могут влиять на изучаемый показатель, так как связь между ними будет отсутствовать. Чем ближе
к 1, тем сильнее связь между факторами и изучаемым показателем. Рассмотрим сначала как влияет X1 на изучаемый показатель Y. Произведем предварительные расчеты в таблице:

Таблица 2.

июл.04 101,3 101,2 10251,56 10261,69 10241,44
авг.04 101 101,8 10281,8 10201 10363,24
сен.04 100,6 103,1 10371,86 10120,36 10629,61
окт.04 101,2 101,8 10281,6 10241,44 10363,24
ноя.04 100,8 102 10281,6 10160,64 10404
дек.04 101 100,1 10110,1 10201 10020,01
янв.05 108,8 100,5 10934,4 11837,44 10100,25
фев.05 102,2 101,3 10352,86 10444,84 10261,69
мар.05 101,2 102,5 10373 10241,44 10506,25
апр.05 100,8 102,5 10332 10160,64 10506,25
май.05 100,8 102,7 10352,16 10160,64 10547,29
июн.05 100,9 100,1 10100,09 10180,81 10020,01
Сумма 1220,6 1219,6 124023,03 124211,94 123963,3
Среднее значение 101,71667 101,6333 10336,96666 10350,995 10330,27

Из таблицы находим среднее квадратическое отклонение фактора

:

=
=0,9679876;

среднее квадратическое отклонение изучаемого показателя

:

=
=2,1718655.

Полученные значения подставляем в формулу:

=
=-0,41056

Коэффициент линейной корреляции равен 0,3 ≤

=
≤0,7. Это говорит о том, что связь между изучаемым показателем (Y) и фактором
умеренная.

Аналогично оценивается влияние остальных факторов на изучаемый показатель (Y).

=

Коэффициент линейной корреляции равен 0,3 ≤

=
≤0,7. Это говорит о том, что связь между изучаемым показателем (Y) и фактором Х2 умеренная.

=

Коэффициент линейной корреляции равен

=
< 0,3. Это говорит о том, что связь между изучаемым показателем (Y) и фактором Х3 слабая.

=

Коэффициент линейной корреляции равен 0,3 ≤

=
≤0,7. Это говорит о том, что связь между изучаемым показателем (Y) и фактором Х4 умеренная.

Коэффициент линейной корреляции равен 0,7 <

=
Это говорит о том, что связь между изучаемым показателем (Y) и фактором Х5 близка к линейной (тесная).

Коэффициент линейной корреляции равен 0,7 <

=
Это говорит о том, что связь между изучаемым показателем (Y) и фактором Х6 близка к линейной (тесная).

Коэффициент линейной корреляции равен 0,7 <

=
Это говорит о том, что связь между изучаемым показателем (Y) и фактором Х7 близка к линейной (тесная).

Коэффициент линейной корреляции равен 0,7 <

=
Это говорит о том, что связь между изучаемым показателем (Y) и фактором Х8 близка к линейной (тесная).

Влияние факторов друг на друга рассчитывается аналогично. Все полученные данные представим в таблице.