Такая же картина повторяется и в каждом из названных четырех интервалов длины
и т.д.0
10
1Повторив
раз наше рассуждение, мы будем иметь интервалов, каждый длины ; для из этих интервалов вероятность попадания в каждый из них будет равна , попадание в остальные будет невозможно. В этих последующих функция распределения будет постоянна. Чтобы определить функцию распределения в каждой точке интервала , достаточно представить себе, что мы повторяем такие же рассуждения бесконечное число раз. После этого даже в точках, оставшихся вне интервалов, в которых функция распределения постоянна, она должна была получить определенные значения в силу того, что она должна быть неубывающей.В самом деле, и слева, и справа от каждой такой точки, с обеих сторон как угодно близко к ней, будут встречаться интервалы, в которых функция распределения постоянна, потому что по мере расширения этих интервалов путем присоединения к имеющимся уже интервалам длины
следующих интервалов длины расстояния между ними становятся сколь угодно малыми.Определив таким образом функцию распределения
, мы уже без труда вычислим среднее значение .Для этого достаточно обратиться к его геометрическому изображению. В данном случае оно изображается площадью, ограниченной прямыми
и и кривой распределения . Но эта площадь в силу симметрии равна площади, ограниченной прямыми и и кривой . Взятые же вместе эти площади составляют площадь квадрата равную 1. Отсюда ясно, чтоАппарат стилтьесовского интегрирования приспособлен для единообразного описания дискретных и непрерывных явлений. Это обстоятельство оказалось решающим и при введении его в математический арсенал квантовой механики.
Если в механике раньше пользовались в основном классическим математическим анализом - аппаратом, приспособленным для описания определенного класса непрерывных явлений, а в тех случаях, когда нужно было описать дискретные явления, прибегали к теории рядов, конечных или бесконечных, то в квантовой механике такие приемы оказались недостаточными. Непрерывные и дискретные аспекты переплелись в ней настолько тесно, что идея их единообразного описания напрашивалась сама собой.
Идея стилтьесовского интегрирования могла оказаться полезной с самого начала. Но в момент зарождения квантовой механики и некоторое время спустя интегрирование по Стилтьесу было еще недостаточно разработано, а главное - слишком мало известно, чтобы лечь в основу квантовой механики. И Дирак повернул направление ее развития в ином направлении.
Дирак в качестве исходной позиции тож ставит проблему единообразного описания дискретных и непрерывных явлений. При этом за основное понятие он берет понятие непрерывности, а дискретное описывает в терминах последнего. Против такого подхода сразу восстал И. Нейман, предложив заменить обобщенные функции интегралами Стилтьеса. Большинство физиков не приняло концепции Неймана, тем не менее он продолжал отстаивать и развивать свою точку зрения, подробно изложив свои соображения в своей монографии. И хотя его концепция была принята не сразу, тем не менее в квантовой механике интеграл Стилтьеса нашел своё применение.
Интеграл Стилтьеса и линейные функционалы.
Понятие функционала явилось предметом многочисленных исследований, восходящих ещё к Эйлеру. Среди этих исследований важное место заняли изыскания по аналитическому изображению функционалов.
В явной форме понятие функционала сформулировал Вольтера в 1887году. Он же дал и первое аналитическое выражение для некоторого класса функционалов в виде выражения, аналогичного ряду Тейлора с привлечением понятия производной функционала. В теории функций наиболее распространенным способом изображения функций является выражение их рядами того или иного типа. По аналогии начались попытки представления функционалов в виде рядов по функционалам
,где
- некоторые константы, зависящие от природы разлагаемого в ряд функционала , а - определенная последовательность фиксированных функционалов. Первым таким разложением было разложение, предложенное Пинкерле и Амальди в 1901 г. Оно имело вид: ,где с - некоторое фиксированное число промежутка
, на котором задано рассматриваемое множество функций .Кроме них предложили общие выражения линейных функционалов Фреше и Адамар, но все эти способы пригодны только для относительно узких классов непрерывных функций. Поэтому поиски новых аналитических выражений для функционалов продолжались.
Решающим в этом направлении был результат Рисса. В 1909 г. Он доказал, что всякий линейный функционал
, определенный в пространстве непрерывных функций , заданных на , раастояние между которыми выражается интегралом Стилтьесагде
- функция с ограниченным изменением, определяемая черезИнтеграл, который мы рассмотрели в данной работе, был введен Стилтьесом. Новое понятие ему было нужно, как мы уже говорили в первой главе, в разрабатывавшейся им теории цепных дробей; он ввел его и применил в интересовавших его вопросах. Разработка же выпала на доли других математиков, таких, как Кёниг, А.А. Марков, А.М. Ляпунов, Г.Ф. Вороной, Рисс, Гильберт, Хеллингер, причем каждый из них пришел к понятию интеграла Стилтьеса, отправляясь от разных задач. В теории цепных дробей применяли его сам Стилтьес и А.А. Марков, в теории R-интеграла - Кёниг, в теории чисел - Г.Ф. Вороной, в небесной механике - А.М. Ляпунов, в теории интегральных уравнений - Гильберт, Хеллингер, в теории линейных функционалов - Рисс. В дальнейшем разработкой интеграла занимались также У.Г. Юнг и Радон. Юнг использовал интеграл Стилтьеса в теории тригонометрических рядов, Радон применял также в теории линейных функционалов, в теории интегральных уравнений.