Смекни!
smekni.com

Математичне програмування в економіці (стр. 4 из 6)

Як буде виготовлено 100 чоловічих костюмів, так х2 = 100 і з першого рівняння-обмеження отримаємо (х1 = 0)


у1 = 350 – 3,5х2 – х1; (1)

у2 = 240 – 0,5х2 – 2х1; (2)

у3 = 150 – х2 – х1; (3)

що у1 = 0, тобто ресурсів шерстяної тканини не буде; з другого рівняння-обмеження отримаємо у2 = 240 – 0,5 × 100 – 2 × 0 = = 190 м шовкової тканини у запасах; з третього рівняння-обмеження отримаємо у3 = 150 – 100 – 0 = 50 людино - тижнів трудомісткості у запасах.

Прибуток складає Z = 10 × 0 + 20 × 100 = 2000 грн.; - Z = - 2000.

Цільова функція Z = 10 × х1 + 20 × х2 через нові вільні змінні (х1 = 0; у2 = 0) має вираз

40 40 40 30

Z = 10 х1 + 20 х2 = 10 × х1 + 2000 - ¾ у1 - ¾ х1 = 2000 - ¾ у1 + ¾ х1,

7 7 7 7

бо (з першого рівняння-обмеження) маємо:

х2 = 100 – у1 / 3,5 – х1 / 3,5.

Перетворимо систему рівнянь-обмежень, замінюючи х2 на його вираз:

х1 + 3,5 (100 – у1 / 3,5 – х1 / 3,5) + у1 = 350; (1¢)

2 х1 + 0,5 (100 – у1 / 3,5 – х1 / 3,50) + у2 = 240; (2¢)

х1 + (100 – у1 / 3,5 – х1 / 3,50) + у3 = 150; (3¢)

х2 + у1 / 3,5 + х1 / 3,5 = 100 (4¢)

Другий опорний план задачи таким чином складає

х(2) = (0; 100; 0; 190; 50; 100); Z (х(2) ) = 2000;

де: х1 = 0; у1= 0 – вільні змінні, відповідає розв’язку задачі, якщо виробляються виключно чоловічі костюми (х2 = 100). Знов надамо цю інформацію у вигляді симплекс-таблиці.


Таблиця

х1 у1 bі
13 ¾ 7 1 - ¾ 7 190 у2 – залишки шовкової тканини
5 ¾ 7 2 - ¾ 7 50 у3 – залишки ресурсів праці
2 ¾ 7 2 ¾ 7 100 х2 – виробництво чоловічих костюмів
30 ¾ 7 40 - ¾ 7 - 2000 - Z – цільова функція

Кожен з елементів симплекс-таблиці має своє значення:

– у першому стовпці (х1) 13 / 7 – потрібна кількість шовкової тканини, потрібної на один жіночий костюм; 5 / 7 – потрібна кількість праці на один жіночий костюм; 30 / 7 – прибуток від одного жіночого костюма;

Дивлячись на цільову функцію

30 40

Z = 2000 + ¾ × х1 - ¾ × у1 ,

7 7

бачимо, що збільшення виготовлення жіночих костюмів може збільшити прибуток, бо х1 ³ 0 , а також 30 / 7 > 0.

Пригадуючи, що у1 = 0, знайдемо значення нової вільної змінної, яка задовольняє систему рівнянь-обмежень (2¢), (3¢), (1¢¢), а також у2 ³ 0 , у3 ³ 0 , х2 ³ 0 .

(2¢) дає, якщо у2 = 0, х1 » 102;

(3¢) дає, якщо у3 = 0, х1 = 70;

(1¢¢) дає, якщо х2 = 0, х1 =350;

Визначальними є обмеження на ресурси праці: , х1 = 70, у3 = 0 з рівняння (3¢).

Визначальний елемент симплекс-таблиці – це коефіцієнт у рівнянні (3¢), якій дорівнює (5/7), та відіграє роль нового центру, або ключового елементу.

Як буде виготовлено 70 жіночих костюмів, так х1 = 70 з рівняння (3¢) отримаємо у3 = 0 (нова базова змінна);

Третій опорний план задачі складає:

Х (3) = (70; 80; 0; 60; 0;); Z (3) = 2300 грн.;

Z (3) > Z (1);

де: у1 = 0; у3 = 0 - вільні змінні, відповідає розв’язку задачі, якщо виробляється 70 жіночих та 80 чоловічих костюмів. Надамо цю інформацію у вигляді симплекс-таблиці.

Таблиця

у3 у1 Опорний розв’язок b1
13 ¾ 5 21 - ¾ 35 60 у2 – залишки шовкової тканини
2 ¾ 5 14 - ¾ 5 80 х2 – кількість чоловічих костюмів
5 - ¾ 7 2 ¾ 5 70 х1 – кількість жіночих костюмів
- 6 28 - ¾ 7 -2300 - Z – цільова функція

Збільшити прибуток неможливо у зв’язку з тим, що вільні змінні (уі > 0), що наявні у цільовій функції мають від’ємні коефіцієнти у той же час, як самі вони додатні. Опорний план Х (3) є оптимальним.

Х* = ( х1* = 70? х2* = 80; у1 = 0; у2* = 60; у3 = 0);

залишки шовкової тканини складають 60 метрів, прибуток складає 2300 грн., як буде виготовлено 70 жіночих та 80 чоловічих костюмів.

Надамо звичайний вигляд симплекс-таблиці розв’язку задачі.

Таблиця 1 ітерація

і Базисні зміни х1 х2 х3 х4 х5 bі Симплекс q = bі / аij Контроль
1 х3 1 а11 3,5 а12 1 а13 0 а14 0 а15 350 350/3,5=100 355,5
2 х4 2 а21 0,5 а22 0 а23 1 а24 0 а16 240 240/0,5=480 143,5
3 х5 1 а31 1 а32 0 а33 0 а34 1 а17 150 150/1=150 153
4 Z (х) +10 с1 +20 с2 0 ас3 0 с4 0 с5 0 - +30

Z (х) = ( -Z); Z (х) – С0 – С1Х1 – С2Х2 – С3Х3 – С4Х4 – С5Х5 = 0;

Z = С0 + С1Х1 + С2Х2 + С3Х3 + С4Х4 + С5Х5 = 0 + 10Х1 + 10Х2 + 0 × Х3 + 0 × Х4+ 0 × Х5 = 0 × Х1 + 2 × Х2 ;

( -Z) = - 10 Х1 – 20 х2; ® min

Таблиця 2 ітерація

j Базисні змінні х1 х2 х3 х4 х5 bi q = bi / aij Контроль
1 х2 2 / 7 1 2/ 7 0 0 100 100/(2/7)=350 101 4/7
2 х4 13 / 7 0 -1/ 7 1 0 190 190/(13/7)»102 192 5/7
3 х5 5 / 7 0 -2/ 7 0 1 50 50/(5/7)=70 51 3/7
4 Z (x) 30 / 7 0 -40/ 7 0 0 -2000 - -2001 3/7

х2 = 100 – (2/7) х1 – (2/7)х3; Z (x) + (30/7) х1 – (40/7)х3 = -2000 ;

Z = 10х1 + 20 × (100 – (2/7)х1 – (2/7)х3 ) = 2000 + (30/7)х1 – (40/7)х3;

- Z = - 2000 + (40/7)х3 - (30/7)х1 = - 2000;


Таблиця 3 ітерація

j Базисні змінні х1 х2 х3 х4 х5 bi q = bi / aij Конт-роль
1 х2 0 1 14/ 35 0 -2/5 80 - 81
2 х4 0 0 21/35 1 -13/5 60 - 59
3 х1 1 0 -2/ 5 0 7/5 70 - 72
4 Z (x) 0 0 -28/ 7 0 -6 -2300 -

х1 = 70 + (2/5) х3 – (7/5)х5; Z (x) - (28/7) х3 – 6 × х5 = -2300 ;

Z = 2000 + (30/7) (70 + (2/5)х3 – (7/5)х5 ) – (40/7) х3= 2300 - 6х5 – (28/7)х3;

- Z = - 2300 + 6х5 + (28/7)х3 = - 2300; х3 = х5 = 0.

У цільовій функції усі вільні змінні від’ємні – опорний план Х* = (70; 80; 0; 60; 0) є оптимальним. Задача розв’язана.

Z*max = (-Z*)min = +2300.

Стереометрично ідея методу полягає у тому, що:

- знаходять будь-яку вершину багатогранника розв’язків;

- рухаються вздовж того з ребер, по якому функція зменшується (збільшується) до іншої вершини багатогранника розв’язків;

- як потрапляють у вершину, з якої у всі боки функція зростає (спадає), так знаходять мінімум (максимум).

Нагадаємо ще раз:

- якщо вектор розв’язків задовольняє усім обмеженням, так він має назву плану;

- якщо план відповідає вершині багатогранника розв’язків (усі вільні змінні дорівнюють нулеві), так він має назву опорного плану;

- якщо опорний план відповідає екстремальному значенню цільової функції, так він має назву оптимального плану.

Критерій оптимальності за симплекс-таблицею.

Якщо форма мінімізується (максимізується) і у рідку цільової функції відсутні додатні числа (від’ємні числа), за винятком стовпчика опорний розв’язок (b1), так опорний план є оптимальним.

Коефіцієнти рядка цільової функції інтерпретують як приріст цільової функції при збільшенні вільної невідомої на одиницю. Приріст додатній, якщо коефіцієнт від’ємний, і навпаки від’ємний, якщо коефіцієнт додатній.

Стовпець “j” є вирішальним, як у цьому стовпцю, оцінка коефіцієнта при невідомій у цільовій функції найбільша за модулем, тобто

½ Сj½ = max.

Змінну “xj” у вирішальному стовпцю знаходять за співвідношенням

bi

min ¾ = q, (fij > 0; bi ³ 0);

aij

яке має назву симплекса , що і дає у свою чергу назву методу. Відповідний елемент aij назву ключового елемента, або центру таблиці.

Вільну змінну, яка відповідає вирішальному стовпчику, залучають до базисних змінних, а базисну змінну, яка відповідає мінімальному симплексу, відповідно перетворюють на вільну змінну.