Смекни!
smekni.com

Использование измерений и решение задач на местности при изучении некоторых тем школьного курса геометрии (стр. 10 из 11)

Рис. 43

3.11.Работая на поле, тракторный агрегат часто совершает холостой «грушевидный» (рис. 44) или «восьмеркообразный» (рис. 45) поворот, который, как допускают в приближенных расчетах, состоит из дуги окружности

радиуса R, плавно (с помощью сопряжения) переходящей в прямые l и т. При этом предполагают, что сопряжение окружности
с прямыми l и т осуществляется дугами окружности того же радиуса R. Кроме того, в случае широкозахватного агрегата (например, трактор с несколькими сеялками) радиус поворота Rоказывается равным ширине захвата b.

Для определения производительности тракторного агрегата необходимо знать длину его холостого пробега и, в частности, длины холостых поворотов.

а) Найдите длину грушевидного поворота широкозахватного агрегата.

Решение. В силу симметрии поворота достаточно рассмотреть лишь его левую половину. Поворот начинается в точке сопряжения с прямой l, а в точке сопряжения с окружностью

происходит переезд с одной окружности на другую. Поэтому для решения задачи необходимо построить точки сопряжения.

Из курса черчения известно, что центр С сопрягающей дуги является точкой пересечения окружности радиуса 2Rс центром в О и прямой, параллельной l, отстоящей от l на расстоянии R(рис. 37), причем точка сопряжения А лежит на отрезке СО, а точка сопряжения В лежит на перпендикуляре к l, опущенном из точки С.

Пусть

— радианная мера угла COS. Тогда

Рис. 44 Рис. 45

OCB=
,и потому

,

,

а значит, длина поворота

Найдем величину

. Поскольку

то

а следовательно,

0,85. Поэтому

.

б) Найдите длину восьмеркообразного поворота широкоза­хватного агрегата.

Решение. Рассуждая так же, как и при решении предыдущей задачи, найдем (рис. 34), что

Однако в этом случае

, а потому
и, следовательно,
0,25. Поэтому

.

Ответы к задачам показывают, что там, где это возможно, предпочтительнее выполнение грушевидного поворота, чем восьмеркообразного, так как при этом холостой пробег агрегата короче.

Замечание. Используемую при решении рассмотренных задач формулу

— длины дуги через радианную меру угла — легко (и целесообразно) вывести при изучении радианной меры угла.

Площади фигур


3.12. Требуется выкопать канал для подачи воды к рыбоводному пруду. Имеется возможность устроить его в форме полувыемки — полунасыпи (рис. 46). В таком случае наиболее экономичным будет такое расположение канала, при котором сечение выемки

Рис. 46

равновелико сечению насыпи (не нужно будет ни отвозить, ни подвозить грунт). Определите, какой должна быть при этом глубина выемки, если об­щая глубина канала h = 2м, ширина по дну b= 1м, ширина гребня выемки а = 1м, а угол наклона откосов—45°.

Решение. Пусть х — глубина выемки. Тогда площадь поперечного сечения выемки

площадь сечения насыпи
. Приравняв площади, получим квадратное уравнение. Решив его, найдем х = 1,2м.

3.13.В различных расчетах по эксплуатации оросительных систем встречается величина R =

гидравлический радиус канала, где F— площадь поперечного сечения канала (живое сечение), Р — длина границы этого сечения (смоченный периметр). Найдите гидравлический радиус канала (рис. 47), проложенного каналокопателем Д — 716 (AD = 260 см, ВС = 60 см,

ABC =
BCD= 135°).

Рис. 47

3.14.С помощью теоретических расчетов и эксперимента установлено, что из всех каналов с заданным живым сечением наибольшей пропускной способностью и одновременно наименьшей фильтрацией отличаются каналы с наименьшим смоченным периметром. Про такие каналы говорят, что они имеют гидравлически наивыгоднейший профиль.

Сечение канала — равнобедренный треугольник. Каким должен быть угол при вершине, чтобы канал имел гидравлически наивыгоднейший профиль?

Решение. Пусть F— живое сечение канала, х — величина угла при его вершине, а — длина боковой стороны треугольника. Так как F=

Р = 2а, то

Смоченный периметр Р будет наименьшим, когда

будет наибольшим, т.е. при х = 90°.

3.15.Для хранения зерна на элеваторах часто сооружают емкости в форме цилиндров [4]. При этом строят сразу несколько таких емкостей, примыкающих друг к другу в определенном порядке, а также в некоторых местах сооружают дополнительные круглые стенки. Получается монолитный корпус с поперечным сечением довольно сложной конструкции. Зерно засыпается не только в цилиндрические емкости (круглые силосы), но и в емкости образовавшиеся между ними (силосы-звездочки). Для расчета емкостисилосного корпуса необходимо знать площади сечений всех его силосов.

На рисунке 48 изображено поперечное сечение силосного корпуса одного из элеваторов. Найдите площади сечений силосов-звездочек 2 и 3, зная диаметр dсилоса 1 и пренебрегая толщиной стенок.

Рис. 48

Решение. Площадь

равна, очевидно, разности между площадью квадрата ABCD и площадью круга 1:

Если от площади квадрата EFGH (которая, очевидно, равна половине площади квадрата

) вычесть
, то мы получим учетверенную площадь луночки. Поэтому площадь луночки

а площадь фигуры 2

УГЛЫ МЕЖДУ ПРЯМЫМИ И ПЛОСКОСТЯМИ

3.16.Найдите наибольший допустимый угол а наклона склона, вдоль которого может стоять, не опрокидываясь назад, заторможенный трактор МТЗ-50 (этот угол называется предельным углом подъема трактора).

Решение. Требуется найти угол между плоскостью склона и горизонтальной плоскостью. Он равен углу между прямыми (рис. 49) в продольном сечении склона. Из курса физики известно, что для устойчивости тела на наклонной плоскости необходимо, чтобы вертикаль, проведенная через центр масс А, не выходила за пределы опоры BD. Рассмотрим предельный случай, когда эта вертикаль АВ проходит через границу опоры. Проведем AC

BDи рассмотрим прямоугольный треугольник АСВ. Так как

ВАС = а, то

.