Смекни!
smekni.com

Использование измерений и решение задач на местности при изучении некоторых тем школьного курса геометрии (стр. 5 из 11)

Ход урока:

1. Организационный момент.Добиться внимания учеников, проверить готовность к уроку.

2. Актуализация знаний.

а) свойства равнобедренного треугольника;

б) подобие треугольников.

3. Объяснение нового материла.

Существуют различные способы измерения высоты деревьев [6]. Рассмотрим некоторые из них.

1.Самый простой способ состоит в том, что в солнечный день можно пользоваться любой тенью, какой бы длины она ни была. Измерив свою тень или тень какого-нибудь шеста, вычисляют искомую высоту из пропорции (рис. 15)

AB :ab=BC:bc

т.е. высота дерева во столько раз больше вашей собственной высоты (или высоты шеста), во сколько раз тень дерева длиннее тени человека (или тени шеста). Это вытекает из геометрического подобия треугольников ABCи abc (по двум углам).

Рис. 15

Вполне возможно обойтись при измерении высоты и без помощи теней. Таких способов много.

2. Можно воспользоваться свойствами равнобедренного прямоугольного треугольника, обратившись к весьма простому прибору, который легко изготовить из дощечки и трех булавок. На дощечке любой формы, даже на куске коры, если у него есть плоская сторона, намечают три точки – вершины равнобедренного прямоугольного треугольника – и в них втыкают торчком по булавке (рис. 16).

Рис. 16

Если нет под рукой чертежного треугольника для построения прямого угла, нет и циркуля для отложения равных сторон, то можно перегнуть любой лоскут бумаги один раз, а затем поперек первого сгиба еще раз так, чтобы обе части первого сгиба совпали, - и получим прямой угол. Та же бумага пригодиться и вместо циркуля, чтобы отмерить равные расстояния.

Отойдя от измеряемого дерева, нужно держать прибор так, чтобы один из катетов треугольника был направлен отвесно, для чего можно пользоваться ниточкой с грузиком, привязанным к верхней булавке. Приближаясь к дереву или удаляясь от него, всегда можно найти такое место А (рис.17), из которого, глядя на булавки а и с, можно увидеть, что они покрывают верхушку С дерева: это значит, что продолжение гипотенузы ас проходит через точку С. Тогда, очевидно, расстояние аВ равно СВ, так как угол а=

.

Рис. 17

Следовательно, измерив расстояние аВ (или на ровном месте, одинаковое с ним расстояние АD) и прибавив BD, т.е. возвышение аА глазанад землей, получите искомую высоту дерева.

3. Можно обойтись даже и без булавочного прибора. Здесь нужен шест, который придется воткнуть отвесно в землю так, чтобы выступающая часть как раз равнялась росту человека. Место для шеста надо выбирать так, чтобы, лежа, как показано на рис. 18, было видно верхушку дерева на одной прямой линии с верхней точкой шеста. Так как треугольник Abc – равнобедренный и прямоугольный, то угол А=

и, следовательно, АВ равно ВС, т.е. искомой высоте дерева.

Рис. 18

4. В качестве прибора для приблизительной оценки недоступной высоты можно использовать карманную записную книжку и карандаш. Она поможет построить в пространстве те два подобных треугольника, из которых получается искомая высота.

Рис. 19

Книжку надо держать возле глаз так, как показано на упрощенном рис. 19. Она должна находиться в отвесной плоскости, а карандаш выдвигаться над верхнем обрезом книжки настолько, чтобы, глядя из точки а видеть вершину В дерева покрытой кончиком b карандаша. Тогда вследствие подобия треугольников abcи аВС высота ВС определяется из пропорции

BC : bc=aC:ac

Расстояние bc, acи аС измеряются непосредственно. К полученной величине ВС надо прибавить еще длину CD, т.е. – на ровном месте – высоту глаза над почвой. Так как ширина ас книжки неизменна, то если всегда становиться на одном и том же расстоянии от измеряемого дерева, высота дерева будет зависеть только от выдвинутой части bcкарандаша.. Поэтому можно заранее вычислить, какая высота соответствует тому или иному выдвижению, и нанести эти числа не карандаш. Записная книжка превратиться тогда в упрощенный высотомер.

5.Своеобразный способ определения высоты дерева при помощи зеркала. На некотором расстоянии (рис. 20 ) от измеряемого дерева, на ровной земле в точке С кладут горизонтально зеркальце и отходят от него назад в такую точку D, стоя в которой наблюдатель видит в зеркальце верхушку А дерева. Тогда дерево (АВ) во столько раз выше роста наблюдателя (ЕD), во сколько раз расстояние ВС от зеркала до дерева больше расстояния СD от зеркала до наблюдателя. Почему?

Рис. 20

Решение:

Способ основан на законе отражения света. Вершина А (рис. 21 ) отражается в точке А’ так что АВ=А’В. Из подобия же треугольников ВСА’ иCED следует, что

AB:ED=BC:CD.

В этой пропорции остается лишь заменить А’В равным ему АВ, чтобы обосновать указанное соотношение.

Рис. 21

Этот удобный и нехлопотливый способ можно применять во всякую погоду, но не в густом насаждении, а к одиноко стоящему дереву.

4. Итоги урока.

На уроке были рассмотрены различные способы измерения высоты деревьев. Изучены различные приборы для измерения высоты деревьев. Полученные знания достаточно легко применяются на практике.

5. Домашнее задание.

№1. Как с помощью зеркала можно измерить высоту дерева, если к нему невозможно подойти вплотную?

№2. В 40 метрах одна от другой растут две сосны. Высота одной 31м, другой – 6м. Как вычислить расстояние между их верхушками?

§6. Педагогический эксперимент

По проблеме исследования был проведен естественно – педагогический эксперимент.

Эксперимент проходил в три этапа:

1 этап – констатирующий эксперимент. При его проведении были выявлены знания учащихся по теме «Использование и измерений и решение задач на местности при изучении некоторых тем школьного курса геометрии», при этом использовались различные формы и методы выявления знаний, такие как: анкетирование, беседы с учащимися и учителями, наблюдение за учащимися.

2 этап – поисковый. На этом этапе производился отбор заданий для проведения факультатива. В результате был подобран комплекс заданий, при работе с которым учащиеся знакомятся с задачами, решаемыми на местности, осуществляется повторение и систематизация знаний школьного курса геометрии, пропедевтика ряда геометрических понятий, повышается интерес школьников к математике, вырабатывается осознанный подход к применению знаний на практике.

3 этап – обучающий (формирующий), когда была проведена экспериментальная проверка знаний, полученных в ходе проведения факультативных занятий, в виде опроса.

На третьем этапе эксперимента проводилась проверка гипотезы.

Выводы: факультативные занятия способствуют углублению и расширению знаний, развитию интереса учащихся к предмету, развитию математических способностей, привитию школьникам интереса и вкуса к самостоятельным занятиям, воспитанию и развитию инициативы и творчества,развитию определенных сторон мышления и черт характера учащихся. Также занятия содействуют профессиональной ориентации учащихся. На факультативах осуществляется подготовка к выпускным экзаменам за счет повторения теории и решения различных задач. У учащихся в процессе изучения темы повысился интерес к геометрии, чего не наблюдается в классах, где факультативные занятия не проводились.

Таким образом, эксперимент подтвердил выдвинутую гипотезу: если систематически и целенаправленно включать в школьный курс геометрии разнообразный материал, то это повысит интерес учащихся к геометрии и разовьет их творческие способности.


ГЛАВА 2

Существует множество различных способов производить измерения при помощи незамысловатых приборов и даже без всяких приспособлений.

Самый легкий и самый древний способ – без сомнения, тот, который греческий мудрец Фалес за шесть веков до нашей эры определил в Египте высоту пирамиды [10]. Он воспользовался ее тенью. Фалес, – говорит предание, - избрал день и час, когда длина собственной его тени равнялась его росту; в этот момент высота пирамиды должна также равняться длине отбрасываемой ею тени. Конечно, длину тени надо было считать от средней точки квадратного основания пирамиды; ширину этого основания Фалес мог измерить непосредственно.

Фалес жил задолго до Евклида, автора замечательной книги, по которой обучались геометрии в течение двух тысячелетий после его смерти. Заключенные в ней истины не были открыты в эпоху Фалеса. А чтобы воспользоваться тенью для решения задачи о высоте пирамиды, надо было знать уже некоторые геометрические свойства треугольника, - именно следующие два:

1) что углы при основании равнобедренного треугольника равны, и обратно - что стороны, лежащие против равных углов треугольника, равны между собою;