Следствие 1. Если требуется найти корень с точностью ε, то кончаем итерационный процесс тогда, когда
Следствие 2. Так как
Теорема 2. Если
Привести уравнение f(x)=0 к виду x=φ(x) таким образом, чтобы получить сходящийся итерационный процесс, можно различными способами. Рассмотрим два из них:
1) уравнение f(x)=0 равносильно при λ≠0 уравнению λf(x)=0 и уравнению x= λf(x)+x. Обозначим λf(x)+x через φ(x), получим x= φ(x). Параметр λ подберем так, чтобы функция φ'(x)= λf'(x)+1 на [a, b] была по модулю меньше единицы.
2) если
Пример. Методом итерации найти корень уравнения 5x-8lnx=8 с точностью 0,01.
Решение. Запишем уравнение в виде
Уравнение имеет два корня:
n | x | 1+lnx | | |
0 1 2 3 4 | 3,53,6053,6513,6723,682 | 2,2532,2822,2952,301 | 3,605 3,651 3,672 3,682 | ------ 0,105 0,046 0,021 0,010 |
Так как φ’(z0)≈3>1, то итерационный процесс расходится. Найдем функцию
n | zn | | | |
0 1 2 | 0,50,5030,503 | -0,688 -0,686 ------ | 0,503 0,504 ------ | ------ 0,0015 0,0005 |
3. Интерполирование и экстраполирование
Задача интерполирования состоит в том, чтобы по значениям функции f(x) в нескольких точках отрезка восстановить ее значения в остальных точках данного отрезка. Разумеется, такая постановка задачи допускает сколь угодно много решений. Задача интерполирования возникает, например, в том случае, когда известны результаты измерений yk = f(xk) некоторой физической величины f(x) в точках xk, k = 0, 1,…, n и требуется определить ее значение в других точках. Интерполирование используется также при необходимости сгущения таблиц, когда вычисление значений f(x) по точным формулам трудоемко. Иногда возникает необходимость приближенной замены (аппроксимации) данной функции (обычно заданной таблицей) другими функциями, которые легче вычислить. При обработке эмпирических (экспериментальных) зависимостей, результаты обычно представлены в табличном или графическом виде. Задача заключается в аналитическом представлении искомой функциональной зависимости, то есть в подборе формулы, корректно описывающей экспериментальные данные.
Интерполирование с помощью многочленов
Пусть функциональная зависимость задана таблицей y0 = f(x0); …, y1= f(x1); …, yn = f(xn). Обычно задача интерполирования формулируется так: найти многочлен P(x) = Pn(x) степени не выше n, значения которого в точках xi (i = 0, 1 2,…, n) совпадают со значениями данной функции, то есть P(xi) = yi. Геометрически это означает, что нужно найти алгебраическую кривую вида
|
Для любой непрерывной функции f(x) сформулированная задача имеет единственное решение. Действительно, для отыскания коэффициентов а0, а1, а2 ,…, аn получаем систему линейных уравнений
Интерполяционный многочлен Лагранжа
Пусть на отрезке [a,b] некоторая функция f(x) задана лишь в некоторых точках
x | x0 | x1 | ... | xn |
f(x) | y0 | y1 | ... | yn |
Кроме того, пусть задана некоторая точка
Этот многочлен называется многочленом Лагранжа.
Его основные свойства:
1) это - многочлен степени
2)
3) если фиксировать любое число
где
Сказанное означает, что если функция