Уменьшение порядка платёжной матрицы
Порядок платёжной матрицы (количество строк и столбцов) может быть уменьшен за счёт исключения доминируемых и дублирующих стратегий.
Стратегия K* называется доминируемой стратегией K**, если при любом варианте поведения противодействующего игрока выполняется соотношение
Ak* < Ak**,
где Ak* и Ak** - значения выигрышей при выборе игроком, соответственно, стратегий K* и K**.
В случае, если выполняется соотношение
Ak* = Ak**,
стратегия K* называется дублирующей по отношению к стратегии K**.
Например, в матрице (рис. 1.4)
B1 | B2 | B3 | B4 | B5 | B6 | |
A1 | 1 | 2 | 3 | 4 | 4 | 7 |
A2 | 7 | 6 | 5 | 4 | 4 | 8 |
A3 | 1 | 8 | 2 | 3 | 3 | 6 |
A4 | 8 | 1 | 3 | 2 | 2 | 5 |
Рис. 1.4. Платёжная матрица с доминируемыми и дублирующими стратегиями
стратегия A1 является доминируемой по отношению к стратегии A2, стратегия B6 является доминируемой по отношению к стратегиям B3, B4 и B5, а стратегия B5 является дублирующей по отношению к стратегии B4. Данные стратегии не будут выбраны игроками, так как являются заведомо проигрышными и удаление этих стратегий из платёжной матрицы не повлияет на определение нижней и верхней цены игры, описанной данной матрицей.
Множество недоминируемых стратегий, полученных после уменьшения размерности платёжной матрицы, называется ещё множеством Парето (по имени итальянского экономиста Вильфредо Парето, занимавшегося исследованиями в данной области) [7].
Пример решения матричной игры в чистых стратегиях
Рассмотрим пример решения матричной игры в чистых стратегиях, в условиях реальной экономики, в ситуации борьбы двух предприятий за рынок продукции региона.
Задача
Два предприятия производят продукцию и поставляют её на рынок региона. Они являются единственными поставщиками продукции в регион, поэтому полностью определяют рынок данной продукции в регионе.
Каждое из предприятий имеет возможность производить продукцию с применением одной из трёх различных технологий. В зависимости от качества продукции, произведённой по каждой технологии, предприятия могут установить цену единицы продукции на уровне 10, 6 и 2 денежных единиц соответственно. При этом предприятия имеют различные затраты на производство единицы продукции. (табл. 1.1.).
Таблица 1.1
Затраты на единицу продукции, произведенной на предприятиях региона (д.е.).
Технология | Цена реализации единицы продукции, д.е. | Полная себестоимость единицы продукции, д.е. | |
Предприятие 1 | Предприятие 2 | ||
I | 10 | 5 | 8 |
II | 6 | 3 | 4 |
III | 2 | 1.5 | 1 |
В результате маркетингового исследования рынка продукции региона была определена функция спроса на продукцию:
Y = 6 – 0.5×X,
где Y – количество продукции, которое приобретёт население региона (тыс. ед.), а X – средняя цена продукции предприятий, д.е.
Данные о спросе на продукцию в зависимости от цен реализации приведены в табл. 1.2.
Таблица 1.2
Спрос на продукцию в регионе, тыс. ед.
Цена реализации 1 ед. продукции, д.е. | Средняя цена реализации 1 ед. продукции, д.е. | Спрос на продукцию, тыс. ед. | |
Предприятие 1 | Предприятие 2 | ||
10 | 10 | 10 | 1 |
10 | 6 | 8 | 2 |
10 | 2 | 6 | 3 |
6 | 10 | 8 | 2 |
6 | 6 | 6 | 3 |
6 | 2 | 4 | 4 |
2 | 10 | 6 | 3 |
2 | 6 | 4 | 4 |
2 | 2 | 2 | 5 |
Значения Долей продукции предприятия 1, приобретенной населением, зависят от соотношения цен на продукцию предприятия 1 и предприятия 2. В результате маркетингового исследования эта зависимость установлена и значения вычислены (табл. 1.3.).
Таблица 1.3
Доля продукции предприятия 1, приобретаемой населением в зависимости от соотношения цен на продукцию
Цена реализации 1 ед. продукции, д.е. | Доля продукции предприятия 1, купленной населением | |
Предприятие 1 | Предприятие 2 | |
10 | 10 | 0,31 |
10 | 6 | 0,33 |
10 | 2 | 0,18 |
6 | 10 | 0,7 |
6 | 6 | 0,3 |
6 | 2 | 0,2 |
2 | 10 | 0,92 |
2 | 6 | 0,85 |
2 | 2 | 0,72 |
По условию задачи на рынке региона действует только 2 предприятия. Поэтому долю продукции второго предприятия, приобретённой населением, в зависимости от соотношения цен на продукцию можно определить как единица минус доля первого предприятия.
Стратегиями предприятий в данной задаче являются их решения относительно технологий производства продукции. Эти решения определяют себестоимость и цену реализации единицы продукции. В задаче необходимо определить:
1. Существует ли в данной задаче ситуация равновесия при выборе технологий производства продукции обоими предприятиями?
2. Существуют ли технологии, которые предприятия заведомо не будут выбирать вследствие невыгодности?
3. Сколько продукции будет реализовано в ситуации равновесия? Какое предприятие окажется в выигрышном положении?
Решение задачи
1. Определим экономический смысл коэффициентов выигрышей в платёжной матрице задачи. Каждое предприятие стремится к максимизации прибыли от производства продукции. Но кроме того, в данном случае предприятия ведут борьбу за рынок продукции в регионе. При этом выигрыш одного предприятия означает проигрыш другого. Такая задача может быть сведена к матричной игре с нулевой суммой. При этом коэффициентами выигрышей будут значения разницы прибыли предприятия 1 и предприятия 2 от производства продукции. В случае, если эта разница положительна, выигрывает предприятие 1, а в случае, если она отрицательна – предприятие 2.
2. Рассчитаем коэффициенты выигрышей платёжной матрицы. Для этого необходимо определить значения прибыли предприятия 1 и предприятия 2 от производства продукции. Прибыль предприятия в данной задаче зависит:
- от цены и себестоимости продукции;
- от количества продукции, приобретаемой населением региона;
- от доли продукции, приобретённой населением у предприятия.
Таким образом, значения разницы прибыли предприятий, соответствующие коэффициентам платёжной матрицы, необходимо определить по формуле (1):
D = p×(S×R1-S×C1) – (1-p) ×(S×R2-S×C2) (1),
где D – значение разницы прибыли от производства продукции предприятия 1 и предприятия 2;
p - доля продукции предприятия 1, приобретаемой населением региона;
S – количество продукции, приобретаемой населением региона;
R1 и R2 - цены реализации единицы продукции предприятиями 1 и 2;
C1 и C2 – полная себестоимость единицы продукции, произведённой на предприятиях 1 и 2.
Вычислим один из коэффициентов платёжной матрицы.
Пусть, например, предприятие 1 принимает решение о производстве продукции в соответствии с технологией III, а предприятие 2 – в соответствии с технологией II. Тогда цена реализации единицы. продукции для предприятия 1 составит 2 д.е. при себестоимости единицы. продукции 1,5 д.е. Для предприятия 2 цена реализации единицы. продукции составит 6 д.е. при себестоимости 4 д.е. (табл. 1.1).
Количество продукции, которое население региона приобретёт при средней цене 4 д.е., равно 4 тыс. ед. (таблица 1.2). Доля продукции, которую население приобретёт у предприятия 1, составит 0,85, а у предприятия 2 – 0,15 (табл. 1.3). Вычислим коэффициент платёжной матрицы a32 по формуле (1):
a32 = 0,85×(4×2-4×1,5) – 0,15×(4×6-4×4) = 0,5 тыс. ед.
где i=3 – номер технологии первого предприятия, а j=2 – номер технологии второго предприятия.
Аналогично вычислим все коэффициенты платёжной матрицы. В платёжной матрице стратегии A1 – A3 – представляют собой решения о технологиях производства продукции предприятием 1, стратегии B1 – B3 – решения о технологиях производства продукции предприятием 2, коэффициенты выигрышей – разницу прибыли предприятия 1 и предприятия 2.
B1 | B2 | B3 | Minj | |
A1 | 0,17 | 0,62 | 0,24 | 0.17 |
A2 | 3 | -1,5 | -0,8 | -1.5 |
A3 | 0,9 | 0,5 | 0,4 | 0.4 |
Maxi | 3 | 0.62 | 0.4 |
Рис. 1.6. Платёжная матрица в игре «Борьба двух предприятий за рынок продукции региона».
В данной матрице нет ни доминируемых, ни дублирующих стратегий. Это значит, что для обоих предприятий нет заведомо невыгодных технологий производства продукции. Определим минимальные элементы строк матрицы. Для предприятия 1 каждый из этих элементов имеет значение минимально гарантированного выигрыша при выборе соответствующей стратегии. Минимальные элементы матрицы по строкам имеют значения: 0,17, -1,5, 0,4.
Определим максимальные элементы столбцов матрицы. Для предприятия 2 каждый из этих элементов также имеет значение минимально гарантированного выигрыша при выборе соответствующей стратегии. Максимальные элементы матрицы по столбцам имеют значения: 3, 0,62, 0,4.