Смекни!
smekni.com

Абель Нильс Хенрик - величайший математик (стр. 2 из 2)

Еще в 1928 году Нейман написал статью "К теории стратегических игр". В ней он доказал знаменитую теорему о минимаксе, которая послужила одной из основ созданной позднее теории игр. Эта статья получилась в результате исследования игры в покер двух партнеров и обсуждения оптимальной стратегии для каждого из игроков. Однако эта работа мало помогла самому Нейману при игре в покер. Так в 1944 году в Лос-Аламосе он проиграл 10 долларов Н. Метрополису сразу же после того, как разъяснил ему эту теорию. Получив выигрыш, Метрополис купил за 5 долларов книгу Неймана и Моргенштерна "Теория игр и экономическое поведение", наклеил на нее другие 5 долларов и заставил автора расписаться об истории этого проигрыша на книге.

Фон Нейман настолько легко и непринужденно чувствовал себя в любой обстановке, как на работе, так и в обществе, без всяких усилий переключаясь от математических теорий к компонентам вычислительной техники, что некоторые коллеги считали его "ученым среди ученых" , своего рода "новым человеком"

Ал-Хорезми Мухаммед бен-Муса
Хорезми Мухаммед бен Мусса
al-Khwarizmi, Muhammad ibn Musa
(783-850)

Имя ал-Хорезми указывает на его родину - среднеазиатское государство Хорезм (ныне территория Узбекистана), бен Муса - значит "сын Мусы", а одно из прозвищ ученого - ал-Маджуси - говорит о его происхождении из рода магов по-арабски "маджусь").

Ал-Хваризми родился в Средней Азии, г.Хива, территория современного Узбекистана. Сведений о жизни и деятельности ал-Хорезми, к сожалению, почти не сохранилось. Известно лишь, что он возглавлял в Багдаде библиотеку Дома мудрости, своего рода Багдадской академии, при халифе ал-Мамуне. А при другом халифе ал-Васике, преемнике ал-Мамуна, он возглавлял экспедицию к хазарам.

В 975-997 он написал Mafatih al-'Ulum ("Ключ к Наукам"), первая арабская энциклопедия знаний, которая была организована на научных принципах. Ее содержание было классифицировано:

  • местные знания - юриспруденция, схоластическая философия, грамматика, секретарские обязанности, просодия и поэтическое искусство, история;
  • иностранные знания - философия, логика, медицина, арифметика, геометрия, астрономия, музыка, механика, алхимия.

Как ученый Ал-Хваризми становится известным из его достижений в математике. Его работа над арифметикой была переведена на латинский в 12-ом столетии, и хотя оригинал потерян, латинский перевод Algoritmi de numero Indorum ("Ал-Хваризми о индийских числах") все еще существует. Его название давало начало математическому термину "арифметика".

Другая работа Ал-Хваризми, Kitab al-jabr wa l-muqabala ("Книга Интеграции и Уравнения, " буквально "сокращение и сравнение"), был синтез индийской алгебры и греческой геометрии и имел самый глубокий эффект на развитие науки. Латинские переводы, резюме и комментарии были написаны в 12 столетии. Математический термин "алгебра" был получен из ее названия.

Ал-Хваризми также издал астрономические и тригонометрические таблицы, базируемые главным образом на арабском переводе индийской астрономической работы Brahma-siddhanta, которая была написана приблизительно за 100 лет до этого. В течение 10-ого столетия Maslama al-Majrti пересмотрел таблицы и добавил его собственный таблицы тангенса, Ал-Хваризми добавил табулирование функции синуса. В той версии таблицы были переведены на латинский в 1126 Adelard of Bath.

Имя ал-Хорезми в видоизмененной форме Algorithmus превратилось в нарицательное слово "алгоритм" и сначала означало всю систему десятичной позиционной арифметики. Впоследствии этот термин приобрел более широкий смысл в математике как правило выполнения операций в определенном порядке. Вспомним, к примеру, алгоритм Евклида или алгоритм решения квадратного уравнения.

О записи числа:

Используя примечания абаки, Ал-Хваризми развивал систему рукописного десятичного числа.

Основанный на углах, он определил номер 1, 2, 3 и 4.

Арабские 1-2-3-4 числа форматируют на наличии углов:

Номер один (1) имеет один угол.

Номер два (2) имеет два угла.

Номер три (3) имеет три угла.

Номер четыре (4) имеет четыре совокупных угла.

Номер четыре закрыт из-за рукописной руки, пишут.

И используя его знание о примечаниях рукописи абаки, он определил номер 5, 6, 7, 8, 9, 0.

Круг - символ закрытой руки, которая имеет пять пальцев.

Номер пять записан под линией.

Номер десять (2-ая рука) записан над линий.

Теоретически, круг над линей приобретает двойную ценность (десять ценностей).

Фигура абаки и рукописные круги:

  • круги - символы: пять, шесть и семь были помещены ниже пишущейся линии.
  • круги -символы : десять, девять и восемь были помещены выше пишущейся линии
  • к кругу пять добавлен штрих с одним совокупным углом, получается номер шесть.
  • к кругу пять были добавлены два штриха, с двумя совокупными углами, делающими номер семь
  • к кругу десять был добавлен штрих вниз с одним углом, получается девять.
  • к кругу десять были добавлены два штриха вниз, с двумя углами, уменьшающие до номера восемь