Смекни!
smekni.com

Аддитивные проблемы теории чисел (стр. 3 из 5)

pxy = a,p < N, Ł a = 1, `. . ` ŁıŁ

łŁº

º º Æ ª ŁŒæŁ -

ª a 6= 0. ` ª ε > 0.

ŁıŁ Œ º æŁ

Ł

æŒ

º æ æ Œ O(N/(ln1+ε N)),

´Ł

ª - ` Æ Ł

æ

º ŁŁ

æ ßı Łæ º Ł Ł æŒŁı

ª ææŁ ı

æ Œ Ł Ł

Œ

ł Ł

ƺ ß ºŁ º Ø Ł ł .

ˇ Ł

º Ł æ ºŁ

æ Ł

æłŁ

Ø ªŁ ß —Ł æ

Œ Ł æŒŁ

).

Ł Ł Æ º ł ª

ł

( Ł

ß Æ ææ ß Ł

1.5.1 ˆŁ

—Ł .

˜º º

æ Ł º Ł

- Œ ŁŁ. ˜ - Œ Ł ζ(s)− -

ºŁ Ł æŒ

Œ Ł Œ º Œæ ª

ª s = σ + it, Ł σ > 1 º æ

Ææ º Ł

æı øŁ æ

˜Ł Łıº :

˙ Ł

- Œ ŁŁ

,

º

Łæº

ºŁ ßı ª ª

æ

Łæº .

: μ

æ

æ ß

Łæº ,

ª Œº

Ł ª æ ª

—Ł

1859 ª. ßæŒ

º

º

Ł

æ

Ł æ ßı

Łæ º æ Re = 1/2 -

Œ ŁŁ,

Œ º

Łº,

æ

Øæ

Ł

º ß ºŁ

- Œ ŁŁ æ º -

ß

Ø Re = 1/2.

¨ Œ,

Œ Ł ζ(s)

º

º æ ı Œ

º Œæ ßı s 6= 1, Ł Ł ºŁ º Ł-

º ßı ºßı s = −2,−4,−6... ¨ Œ Ł º ª Ł

s)ζ(1 − s), Ł ª ß Ł

Ł s > 1 æº , æ æ º ß

ºŁ, ß ß Ł Ł º ß Ł¿, æ º ß º æ 0 6 s 6 1 æŁ Ł æŁ º Œ ß Ø "Œ Ł Ł æŒ Ø ºŁ ŁŁ"

R. ˆŁ —Ł , :

´æ Ł Ł º ß ºŁ - Œ ŁŁ Ł Øæ Ł º æ ,

.

˛Æ Æø…

ªŁ —Ł

æ æ

Ł Ł ª æ ª

Ł

º Æ Æø -

ŁØ -

Œ ŁØ, ß

ßı L-

Œ Ł Ł ˜Ł Łıº .

2 æ º.

ß ł

Ł

ƺ Ł Ł

Ø

ŁŁ Ł-

ˇ ß æŁæ

Ł æŒŁ

º ß

Ł Ł Ø ŁŁ

Łæ º ÆߺŁ

º ß ¸ -

غ

(1748), Œ

ßØ Łææº

º æ ø æ

ßı

º Ł

ºßı Łæ º

º Ł º

ß æº ª

ß , æ æ Ł, Ł Æߺ ææ

º ŁŁ

Łæº

Œ ºŁ

æ æº ª ßı.

2.1 Œ ŁŁ Œ Ł øŁ Œ Ł .

ªŁ Œº ææŁ æŒŁ Ł Ł Ł Ø ŁŁ Łæ º ł æ Œ ŁŁ Œ Ł øŁ Œ Ł . æı Ł Œ ¸. غ Ł º Ł æ -

ºŁ Ł æŒŁı , Ł ßı ˆ. X. Ł (G. H. Hardy), ˜ . ¨. ¸Ł º (J. ¯.

Littlewood) Ł ¨. . ´Ł ª ß . ¨æı Ø º æ Ł æ æ º Ł ß æº º æ :

Ai = {ai},ai > 0,a Z,i = 1,2,3,... æ ßı : æ Ł ø Ø Œ Ł Ø

,

ª r(n) = rk,A(n)− Œ ºŁ æ æ º ŁØ Łæº Ł :

n = a1 + a2 + ... + ak,ai Ai,A = {A1A2,...}.

ˇ Ł r(n) ß Łæº æ Ł øŁ Ł ª º ˚ łŁ. ´ ´Ł ª æ ß ß æ Łª Ł æŒŁ Ł æ Ł:

¨ r(n) ß º æ ªº

æ , æ æ ø

Ł Ł º , æ æ ßı

Œ æ æ Ł Œ ßı Ł

º ßı Œ. ´

æ ºŁ Ł æŒŁı æ Øæ F(z), -

Æ øŁı Ł Ł

Ø ŁŁ Łæ º

Ł º Ł ªŁ , º ªŁ ßı ªŁ-

—Ł , º

º Ł ß Łæº

ŁŁ r(n) Łª Łæ Ł Ł æŒŁ

ŒŁ Łª Ł . æ

´Ł ª

Ł Œ ß æ º Ł æ ßı

Łæ º Ł Ł æŒŁı ª

ææŁ ı, º

ß æ ß Ł Ł -

ŁŁ L- Œ ŁØ ˜Ł Łıº . æ

ºŁ æ ,

ŁæŁ æ Ł k ºŁÆ r(n) 6= 0 º

æ ı n > 1, ºŁÆ r(n) 6= 0 º

æ Æ º łŁı n n > n0(A), ºŁÆ Ł º æ ı

ß º æ æ ł Ł r(n) 6= 0, . .

,

ŁºŁ, Œ , º r(n) Ł æ æŁ Ł

æŒ

º . ˝ Ł

ł Łæº k, º -

ø Ł Łæº ßı æº

ŁØ, Æ

æ æ

æ g(A), G(A),

G0(A), k0(A). ´ æº {ai} = {p}, ª {p}−

æº

º æ

æ ßı Łæ º, Ł k =

3 º æ ´Ł ª : æ Œ

æ

Æ º ł

Łæº

Æß æ º Ł æ ß ı æ ßı Łæ º; Ł k = 2 - Œ : Ł æ ß Łæº ª Æß æ º ß Ł æ ß ı æ ßı Łæ º.

2.2 ß ł . ¨ææº Ł æ Œ ß æ .

˝ Œ ß Ł Ł Ł Ø ŁŁ Łæ º ł æ Ł øŁ Łææº Ł æ Œß æ , º øŁıæ º æ Ł Ł æº º æ Ø Aiai,

ßı ºŁł Łı º æ Ł

, ª Ai(n) = P16ai6n 1. ¨ º Ł º æ Ł dn(Ai) Ł A1 = A2 = ... = Ak = A æº , g(A) < ∞. ˇ Ł Ł ª