Виявилося, що активність більшості кліток цієї зони мозку залежить від напрямку руху лапи; і ця залежність досить чітка: для кожної з кліток існує такий напрямок руху, при якому активність максимальна; при інших напрямках активність зменшується приблизно як косинус кута між даним напрямком максимальної активності. Для тих напрямків, для яких косинус негативний, клітка взагалі перестає імпульсувати.
Виходить, що з кожною клітиною кори зв'язаний визначений вектор максимальної активності Аmax. Коли потрібно рухати лапу по іншому напрямку, тобто заданий деякий одиничний вектор напрямку e, клітка знаходить проекцію Аmax на цей напрямок, тобто “обчислює” скалярний добуток Аmax.е. З'ясувавши це, Георгопулос поставив зворотну задачу: чи не можна, реєструючи роботу нервових кліток, визначити напрямок руху лапи. Математично ця задача може бути сформульована як питання про існування функції, оберненої до заданої. Ясно, що по активності однієї клітки напрямок руху визначити не можна: по-перше, косинус — функція парна, і на тому проміжку, що нас цікавить, не має оберненої. Якщо, наприклад, напрямок максимальної активності — це прямо вперед, а активність нейрона складає половину максимальної активності, то відомо, що лапа рухається під кутом 60° до переважного напрямку, але чи вправо чи вліво від нього — визначити неможливо. По-друге, в однієї клітини занадто велика “мертва зона” — зона, коли вона взагалі мовчить. Але якщо реєструвати кілька кліток, те можна успішно визначити напрямок, у якому рухається лапа (і навіть пророчити, у якому напрямку вона буде рухатися тому, що клітини починають працювати за десяту частку секунди до того, як лапа починає рухатися).
Ще в 1971 році американські психологи Р. Шепард і Дж. Метцлер знайшли явище, яке вони назвали “уявним обертанням”. В експериментах випробовування показували дві фігури і запитували: це різні фігури чи та сама, але повернена на деякий кут? Час відповіді виявився лінійною функцією величини кута повороту однієї фігури щодо іншої.
В іншому варіанті експерименту поперемінно показували букву R і її дзеркальне відображення — букву Я. Треба було швидко визначити, яка це буква. При цьому букву показували в різних положеннях. І тут час відповіді був пропорційний куту повороту букви відносно “нормального” положення.
Учені припустили, що людина в такому експерименті думкою обертає образ сприйманої фігури (а по ряду психологічних експериментів, скоріше, еталон фігури, збережений у пам'яті) з постійною кутовою швидкістю і навіть визначили цю швидкість. Вийшло 450o/с. Однак такими експериментами неможливо довести гіпотезу “уявного обертання”, тому що залишається невідомим, що ж відбувається в дійсності в головах випробовуваних.
Георгопулос, маючи можливість “підглядати” за роботою нейронів мозку мавпи, одержав у 1989 році дані, що роблять гіпотезу про уявне обертання більш обґрунтованою.
Тепер мавпу навчили тягти лапу не до тієї лампочки, що горить, а до тієї, котра знаходиться під кутом 90° до неї. Експериментатори змогли довідатися, що відбувається в мозку мавпи від моменту, коли запалилася лампа, до початку руху лапи. Виявилося, що після спалаху вектор спрямований прямо на лампочку, потім починає обертатися і, коли повернеться на 90°, починається рух лапи. Швидкість обертання вектора виявилася рівної приблизно 730°/с, тобто була того ж порядку, що й у психологічних дослідах з людиною.
Таким чином, як показують ці експерименти, мозок може робити і геометричні перетворення.
Зробимо ще один натяк на математичні здібності мозку. Зараз бурхливо розвивається рівнобіжне програмування. Але коли людина бере предмет, він одночасно керує роботою і плеча, і ліктя, і пальців, здійснюючи саме сьогодення рівнобіжне програмування.
Отже, у живих організмах йдуть процеси переробки передачі інформації і використання її з метою керування. Еволюція поступово знаходить вдалі форми обробки інформації, і ці форми мають чималу подібність з математичними операціями. Такі хитрування еволюції ми і назвали “математикою в живих організмах”.
Це дійсно ЕОМ, тому що дії цих пристроїв засновані на електричних явищах в організмі.
До речі, у мечохвоста немає зіниці, і, виходить, немає діафрагми. Утім, навіть облік єфекту діафрагми не рятує положення, змінюючи освітленість усього на 1-2 порядка.
З'ясувалося, що при відновленні положення центра ваги в кішки передні лапи використовуються як пасивні підпірки. Активно працюють саме задні лапи.
Пропорційність частоти роботи нервових кліток косинусу того чи іншого кута була відома і до роботи Георгопулоса. Наприклад, ще в 1981 році в стовбурі мозку були виявлені нейрони, зв'язані з “стрибками” очей: їхня активність мінялася в залежності від напрямку стрибка ока за законом косинуса.
Велику роль відіграє математика в розв’язуванні екологічних проблем. Математика використовується для аналізу прикладів економного та ефективного використання природних ресурсів, розкриття математичних закономірностей певних явищ природи, виховання екологічного розуміння та екологічної культури, відповідальності за стан навколишнього середовища.
Екологічне виховання відбувається в процесі розвязання вдало складених задач, побудови діаграм, коротких повідомлень на уроці.
Бережливість – це не тільки економічна категорія, а принцип моралі. Тому мовою цифр треба розказувати про природні багацтва та фактори, які сприяють їх збереженню та примноженню.
Будівництво міст і сіл, мостів і тунелей, доріг і каналів, розрахунки запуску космічних кораблів- у всіх цих та інших спрвах є участь геодезистів. І тут геодезисти не обійдуться без математики. Тисячоліття трудиться геодезія над розв’язанням задачі: яка ж у Землі форма, які її розміри. Виявляється, що на нашій планеті є багато різних ям і горбів, які в значній мірі змінюють форму Землі. Відомо, що простими геодезичними інструментами на поверхні Землі можуть бути віміряні лінійні відстані в межах 80 км. А за допомогою радіогеодезичних приладів в межах 800 км. Але для визначення розмірів нашої планети крім астрономо-геодезичних даних потрібні також відомості про зовнішнє гравіатаційне поле Землі.
Щоб їх одержати людині неохідно було піднятися в космос, створити систему опорних пунктів для топологічних зйомок, тобто зробити триангуляцію території. Спостерігаючи за супутником одночасно з двох різних точок нашої планети можна визначити координати двох інших точок. За матеріалами космічних знімків, розв’язується біля 300 задач наукового і народногосподарського значення. Причому робиться це в 3-4 рази швидше і обходиться в 12-15 раз дешевше, ніж при традиційних топографічних методах. Одержана в космосі інформація дуже різноманітна і має дуже велике значення в сільському господарстві. Більш ніж 90 % її дають космічні зйомки. За їх результатами створюються грунтові і геоботанічні карти. З їх допомогою розробляються найвигідніші проекти землеустрою: приймається рішення, де краще розмістити нові населені пункти, прокласти дороги і лінії зв’язку, як проводити меліорацію. Інформація з космосу потрібна і геологічним партіям, що ведуть розвідку корисних копалин, вона широко застосовується також для вивчення і використання ресурсів Світового океану. Космічною інформацією користуються наукові і проектні організації. Ефект від економії обчислюється багатьма мільйонами гривень. Кругозір людини розширюється небувалими темпами. Ми повинні добре орієнтуватися не тільки на землі, а й у космічному просторі.
Прогноз погоди потрібний для всіх галузей господарства кожноі країни. Наприклад, за підрахунками вчених США, підвищення надійності метеорологічного прогнозу всього на 10% дає для цієї країни щорічну економію в кілька сотень мільйонів доларів.
Систематичні щоденні спостереження за всіма змінами погоди проводять на 8000 метеорологічних станціях, з допомогою понад 3000 літаків і 4000 спеціальних кораблів.Метеорологічні супутники здатні оглядати всю планету і своєчасно передавати на поверхню Землі потрібну інформацію.
Всю цю інформацію опрацьовують математики-матеорологи в метеоцентрі.
Добре знати математику потрібно навіть при виконанні порівняно нескладних креслень. Архітектори використовують в своїй роботі математичні формули, теореми та властивості геометричних фігур. Термін “золотий переріз” ввів Леонардо да Вінчі. Цей відомий художник, математик при зображенні людей використовував “золотий переріз”. Без нього не обійтись в мистецтві й архітектурі. Евклід розробив теорію відношень і пропорцій і використовував їх при побудові правильних п’ятиі десятикутників та при побудові правильних дванадцяти- і двадцятикутників. Цим користуються архітектори і зараз. “Золотий переріз” називають також “гармонійним” або діленням в крайньому та середньому відношенні. Результат роботи архітектора повинен бути точним. Його перспективний рисунок повинен відповідати правилам геометрії, зокрема нарисної. В перспективному рисунку переходять від загальних рис до деталей. Степінь стилізації вибирають в залежності від масштабу зображуваного об’єкта. Ні один архітектор не обійдеться без знання масштабу, пропорції. Виразність рисунка, креслення можна досягти тільки добре розвинутим почуттям лінії, її пропорційності, товщини і правильним розміщенням, рівновагою на рисунку площин ліній світла і тіні.