Смекни!
smekni.com

Математика цариця наук звязок математики з іншими науками (стр. 9 из 13)

Факторний аналіз — метод математичної статистики, який використовується у процесі дослідження статистично пов’язаних ознак з метою виявлення деяких прихованих від безпосереднього спостереження факторів. За допомогою факторного аналізу не просто встановлюється зв’язок між змінними, що перебувають у стані перетворень, а виявляються основні фактори, що лежать в основі вказаних перетворень. Особливо ефективним факторний аналіз може бути на початкових стадіях дослідження, коли потрібно з’ясувати деякі попередні закономірності в досліджувальній сфері. Це дасть змогу експеримент зробити більш досконалим порівняно з експериментом, заснованим на змінних, обраних довільно, або випадково.

У цьому математичні методи можуть бути досить ефективними та корисними в організації і проведенні психологічних досліджень, проте необхідно пам’ятати, що математичний метод, як і будь-який інший, має свою сферу застосування та певні дослідницькі можливості. Застосування методу зумовлене природою предмета дослідження та завданнями пізнавальних дій дослідника. Ці вимоги стосуються і методів математичних.

В історії застосування психологією математичних методів були різні періоди: від абсолютизації їхніх можливостей та вимог обов’язкового застосування їх з психологічної практики. В дійсності ж має бути збережений своєрідний пріоритет, а основою його становлення повинен бути один із принципів психологічного дослідження — вимога змістовності та процедурної спорідненості природи досліджуваного явища та методу, який використовується (або системи методів). Статистичний аналіз дає змогу встановити та визначити кількісну залежність явищ. Проте не розкриє її змісту, і водночас побудова надійних і валідних тестів неможлива без застосування математичних методів. Отже дотримання принципів організації психологічних досліджень завжди допоможе запобігти дурним недолікам дослідження.

Математика у психології також має справу з просторовими формами й кількісними відношеннями.

Відповіді на ці питання стосуються й математики. Адже математика, незважаючи на безмежність абстракцій, має вихідні положення (те саме поняття числа), зміст яких пов’язаний із закономірностями функціонування людської психіки.

Математика і мова

Математику у мові простежити дуже важко, бо вона використовується досить рідко і не відкрито. Найяскравішим прикладом є визначення віршованого розміру, або таке поняття як математична лінгвістика.

МАТЕМАТИЧНА ЛІНГВІСТИКА, алгебраїчна лінгвістика, обчислювальна лінгвістика — галузь науки на межі математики й лінгвістики, що вивчає найзагальніші закони будови символьних послідовностей, або знакових систем, до яких належать деякі абстрактні математичні структури, штучні та природні мови. Інколи розмежовують математичну лінгвістику, як галузь математики і математична лінгвістика, як розділ мовознавства, підкреслюючи при цьому, що між ними існує тісна взаємодія, бо вони використовують той самий поняттєвий апарат. Отже, можна вважати, що математична лінгвістика є єдиною семіотичною дисципліною, яка досліджує форми методами — алгебраїчними, теоретико-множинними, логіко-математичними. Основними поняттями, що використовуються в математичній лінгвістиці, вважають:

1) множинність вихідних символів (алфавіт);

2) відношення між елементами алфавіту, що сприймаються як аксіоми (постулюються);

3) правила виводу, тобто обчислення всіх можливих множин символьних ланцюжків;

4) ізоморфізм, тобто одно-однозначні відношення між елементами послідовності, при яких кожному елементові однієї послідовності ставиться у відповідність елемент інші послідовності;

5) гомоморфізм, одно-багатозначні відношення, коли одному елементу першої послідовності відповідає кілька елементів другої і навпаки;

6) відмічений (маркований) ланцюжок, тобто такий, що відповідає правилам виводу (граматично правильний, допустимий);

7) входження символу в послідовність, тобто поява його на заданому місці в ланцюжку;

8) поділ вихідної множини класу ланцюжків за певними правилами на підкласи. Використання операцій, що базуються на цих поняттях, дає можливість одержати аналоги граматичних класів і підкласів, категорій, парадигм, синтаксичних одиниць та відношень. Властивості відношення одиниць досліджуваної знакової системи виявляють і вивчають шляхом побудови синтезувальних (породжувальних, дедуктивних) й аналітичних (індуктивних) математичних моделей. Важливим етапом використання математичної моделі та її елементів і операцій є інтерпретація їх у термінах певної мови. Інтерпретувати модель — значить поставити у відповідність кожному елементу, правилу, відношенню, поняттю, використовуваному в моделі, клас одиниць, правило, категорію, поняття природної мови. При інтерпретації моделі між нею і мовою можуть бути як ізоморфні, так і гомоморфні відношення. Методи і положення математичної лінгвістики є базою для створення алгоритмічних мов, для побудови автоматичних систем, опрацювання мовного матеріалу в ЕОМ: машинного перекладу, інформаційного пошуку, автоматизації видавничих процесів, реферування й анотування наук, літератури, створення термінології банків, машинних фондів різних мов, укладання словників, машинного розпізнавання і синтезу усного мовлення та ін.

Математика у живих організмах

Жива природа зробила безліч “винаходів”, які люди зрозуміли і змогли повторити лише при відповідному рівні розвитку науки і техніки. Наприклад, принцип єхолокації ефективно використовують і дельфіни, і кажани, а в техніку він з'явився тільки в XX столітті. Пошук здобичі по інфрачервоному випромінюванню використовують багато видів змій, у той час як окуляри для нічного бачення створені лише недавно і т.д. До останнього часу існували переконання, що природа не винайшла “колеса”. Але виявилося, що джгутики бактерій обертаються в спеціальних “підшипниках”. Виходить, колесо винайдено природою ще на самих ранніх етапах еволюції. Існує спеціальна наука — біоніка, що вивчає “патенти природи”. Виявляється, що їх можна іноді використовувати й у “людській” техніці.

Менш відомо, що в живих організмах відбуваються явища, що дозволяють вважати, що природі належить “пріоритет” і в створенні своєрідних ЕОМ — пристроїв, що роблять операції, дуже подібні з математичними операціями, які ми схильні вважати досягненням людської науки.

Наприклад, як “рахують” нервові клітини, як “логарифмує” око (і навіщо йому це знадобилося), як оперує з векторами і тригонометричними функціями мозок кішки і мавпи (і наш з вами теж).

Як рахують нейрони

Перше знайомство з математикою — це рахунок: “Один, два, три, чотири, п'ять …” Найпростішим є натуральне число. Негативні числа дуже повільно входили в математику. З'явившись у раннім середньовіччі в Індії, вони лише в XIII-XIV століттях проникають у європейську науку, зустрічаючи там спочатку дуже стримане до них відношення. Їх називають “помилковими”, “абсурдними” числами. Але поступово негативні числа довели своє право на існування і стали звичними не тільки для фахівців. Те, що було “на передньому краї науки” у середні століття, сьогодні спокійно сприймають п'ятикласники.

А от у живих організмах, виявляється “все навпаки”: нервовій клітині (нейрону) природно і просто здійснювати операції з позитивними і негативними дійсними “числами”, а для того щоб “рахувати” навіть до двох, потрібна система з декількох нейронів — примітивний “мозок”.

Як же працює нейрон? Як усяка клітина, нейрон відділений від зовнішнього міжклітинного середовища особливою оболонкою — мембраною. Між внутрішнім вмістом клітки і зовнішнім середовищем існує різниця потенціалів. Якщо клітка знаходиться в спокої, різниця потенціалів на її мембрані не міняється. Цю різницю потенціалів у спокої природно прийняти за нульовий рівень (подібно тому, як прийняли за нульову температуру танення льоду).

На нейрон можуть діяти інші нервові клітки — збудливі і гальмові. Сигнали, отримані від цих кліток, викликають зміни різниці потенціалів на мембрані в двох протилежних напрямках. Коли різні сигнали приходять до нейрона одночасно, вони складаються, причому, природно, з урахуванням знака, тобто нейрон підсумовує позитивні і негативні сигнали.

Цікава особливість роботи нейрона полягає в тому, що на відміну від технічних сумарів — від древнього абака до ЕОМ — отриману суму він “пам'ятає” недовго: якщо зовнішні впливи припинилися, то накопичена сума починає спадати по абсолютній величині для того, щоб нейрон повернувся в стан спокою.

Така “ненадійність” нейрона пов'язана з тим, що він призначений не для збереження, а для передачі і перетворення інформації: отриманий сигнал нейрон передає іншим кліткам нервової мережі (клітинам“мішеням” або “адресатам”). За способом передачі сигналу існують два різних типи нейронів з різними принципами роботи: “аналогові” і “граничні”.

Нейрон першого типу діє на клітці-мішені із силою, пропорційній накопиченій сумі, – але тільки в тому випадку, коли ця сума позитивна. Коли ж сума негативна, то вона далі не передається — нейрон загальмований. Правило перетворення сигналів аналоговими нейронами описується формулою y=kx, де х — накопичений потенціал, у — величина переданого сигналу, a k — коефіцієнт пропорційності.

Нейрони другого типу працюють інакше. Такий нейрон “мовчить”, поки сума впливів не досягне деякої визначеної позитивної величини — “порога”. Тоді нейрон збуджується і посилає по своєму вихідному відростку — аксону — електричний імпульс (завжди однієї і тієї ж величини), що і діє на клітці-мішені. Після порушення нейрон якийсь час “відпочиває” — мовчить, незалежно від того, діють на нього інші клітки чи ні, а потім, якщо до кінця відпочинку накопичена сума вище порога, посилає новий імпульс. У результаті в залежності від величини вхідного сигналу, його тривалості й у залежності від характеристик нейрона на виході виходить сигнал у виді серії імпульсів постійної величини, але різної частоти. Таким чином, граничні нейрони використовують зовсім нетривіальний принцип кодування інформації частотою сигналу.