а). Если
, то . Тогда , ; если число - чётное, то и функция - чётная (то есть при всех ); если число - нечётное, то и функция - нечётная (то есть при всех ).Показательная функция - математическая функция
.В вещественном случае основание степени
- некоторое неотрицательное вещественное число, а аргументом функции является вещественный показатель степени.В теории комплексных функций рассматривается более общий случай, когда аргументом и показателем степени может быть произвольное комплексное число.
В самом общем виде - uv, введена Лейбницем в 1695 г.
Особо выделяется случай, когда в качестве основания степени выступает число e. Такая функция называется экспонентой (вещественной или комплексной).
Свойства
; ; .Показательные уравнения.
Перейдем непосредственно к показательным уравнениям. Для того чтобы решить показательное уравнение необходимо воспользоваться следующей теоремой: Если степени равны и основания равны, положительны и отличны от единицы, то равны и их показатели степеней. Докажем эту теорему: Пусть a>1 и aх=ay.
Докажем, что в этом случае х=y. Допустим противное тому, что требуется доказать, т.е. допустим, что x>у или что x<у. Тогда получим по свойству показательной функции, что либо aх<ay либо aх>ay. Оба эти результата противоречат условию теоремы. Следовательно, x=у, что и требовалось доказать.
Также доказывается теорема и для случая, когда 0<a<1. Замечание. Из равенства aх=ay не обязательно следует что x=у. Из равенства 1х=1y также не обязательно вытекает равенство x=у. Самым простым показательным уравнением является уравнения вида aх=ay, где a>0 и a≠1.
Неравенства вида (или меньше) при а (х) >0 и решаются на основании свойств показательной функции: для 0 < а (х) < 1 при сравнении f (x) и g (x) знак неравенства меняется, а при а (х) > 1 - сохраняется. Самый сложный случай при а (х) < 0. Здесь можно дать только общее указание: определить, при каких значениях х показатели f (x) и g (x) будут целыми числами, и выбрать из них те, которые удовлетворяют условию. Наконец, если исходное неравенство будет выполняться при а (х) = 0 или а (х) = 1 (например, когда неравенства нестрогие), то нужно рассмотреть и эти случаи.
Логарифм числа b по основанию a (от греч. λόγος - "слово", "отношение" и ἀριθμός - "число" [1] ) определяется как показатель степени, в которую надо возвести основание a, чтобы получить число b. Обозначение:
. Из определения следует, что записи и равносильны. Пример: , потому что . СвойстваОсновное логарифмическое тождество:
Логарифмическая функция, её свойства и графики.
Логарифмической функцией называется функция вида f (x) = logax, определённая при
Область определения:
Область значения:
График любой логарифмической функции проходит через точку (1; 0)
Производная логарифмической функции равна:
Уравнение, содержащее переменную под знаком логарифма, называется логарифмическим. Простейшим примером логарифмического уравнения служит уравнение loga х = b (где а > 0, а
1). Его решение x = ab.Решение уравнений на основании определения логарифма, например, уравнение loga х = b (а > 0, а 1) имеет решение х = аb.
Метод потенцирования. Под потенцированием понимается переход от равенства, содержащего логарифмы, к равенству, не содержащему их:
если loga f (х) = loga g (х), то f (х) = g (х), f (х) >0, g (х) >0, а > 0, а 1.
Метод приведения логарифмического уравнения к квадратному.
Метод логарифмирования обеих частей уравнения.
Метод приведения логарифмов к одному и тому же основанию.
Логарифмические неравенства.
Неравенство, содержащее переменную только под знаком логарифма, называется логарифмическим: loga f (х) > loga g (х).
При решении логарифмических неравенств следует учитывать общие свойства неравенств, свойство монотонности логарифмической функции и область ее определения. Неравенство loga f (х) > loga g (х) равносильно системе f (x) > g (x) > 0 при a > 1 и системе 0 < f (x) < g (x) при 0 < а < 1.
Радианное измерение углов и дуг. Синус, косинус, тангенс, котангенс.
Градусная мера. Здесь единицей измерения является градус (обозначение ) - это поворот луча на 1/360 часть одного полного оборота. Таким образом, полный оборот луча равен 360. Один градус состоит из 60 минут (их обозначение ‘); одна минута - соответственно из 60 секунд (обозначаются “).
Радианная мера. Как мы знаем из планиметрии (см. параграф "Длина дуги" в разделе "Геометрическое место точек. Круг и окружность"), длина дуги l, радиус r и соответствующий центральный угол
связаны соотношением: = l / r.Эта формула лежит в основе определения радианной меры измерения углов. Так, если l = r, то
= 1, и мы говорим, что угол равен 1 радиану, что обозначается: = 1 рад. Таким образом, мы имеем следующее определение радианной меры измерения:Радиан есть центральный угол, у которого длина дуги и радиус равны (AmB = AO, рис.1). Итак, радианная мера измерения угла есть отношение длины дуги, проведенной произвольным радиусом и заключённой между сторонами этого угла, к радиусу дуги.
Тригонометрические функции острых углов можно определить как отношение длин сторон прямоугольного треугольника.
Синус:
Косинус:
Тангенс:
Котангенс:
Определение.
Синусом числа х называется число, равное синусу угла в х радианов. Косинусом числа х называется число, равное косинусу угла в х радианов.