б) f(x)=sinx,
в) y=ax
,43. Производные высших порядков. Пусть на отрезке (a; b) определена функция y = f(x). Предположим, что эта функция имеет производную на отрезке (a; b). В свою очередь f’(x) является функцией, от переменной величены x, поэтому можно рассмотреть задачу по вычислению производной от производной функции. Если эта производная существует, то ее называют второй производной и обозначим следующим образом: f “ (x) или
. Аналогичным образом определим третью производную и т.д. Производная порядка n обозначим Т.к. (f(x) + g(x))’ = f’(x) +g’(x), то следует Аналогичным образом: