Нормальное уравнение прямой. Пусть прямая проходит через точку М(X; Y) перпендикулярно отрезку OP. Длина отрезка
17. Расстояние от точки до прямой.
Пусть дана какая – нибудь прямая и произвольная точка М*; обозначим через d расстояние точки М* от данной прямой. Отклонением d точки М* от прямой называется число +d, если данная точка и начало координат лежат по разные стороны от данной прямой, и –d, если данная точка и начало координат расположены по одну сторону от данной прямой. Если даны координаты X*, Y* точки М* и нормальное уравнение прямой X cosa + Y sina - p = 0, то отклонение d точки М* от этой прямой может быть вычислено по формуле d = X* cosa + Y* sina - p. Таким образом, чтобы найти отклонение какой – нибудь точки М* от данной прямой, нужно в левую часть нормального уравнения этой прямой вместо текущих координат подставить координаты точки М*. Полученное число будет равно искомому отклонению. Чтобы найти расстояние d от точки до прямой, достаточно вычислить отклонение и взять его модуль: d =
18. Взаимное расположение прямых на плоскости.
Пусть на плоскости заданы две прямые:A1x + B1y +C1 = 0 A2x + B2y + C2 = 0 – 1). Возможны следующие случаи взаимного расположения этих прямых: 1) Прямые пересекаются в одной единственной точке, это означает, что система 1) имеет единственное решение.
19. Плоскость в пространстве.
В декартовых координатах каждая плоскость определяется уравнением первой степени, и каждое уравнение первой степени определяет плоскость. Всякий вектор, перпендикулярный к данной плоскости, называется ее нормальным вектором. Уравнение A(X – Xo) + B(Y – Yo) + C(Z – Zo) = 0 – 1) определяет плоскость, проходящую через точку Мо (Xo; Yo; Zo) и имеющую нормальный вектор n = {A; B; C}. Раскрывая в уравнении 1) скобки и обозначая число – AXo – BYo – CZo буквой D, представим его в виде: AX + BY + CZ + D = 0. Это уравнение называется общим уравнением плоскости. Различные виды уравнения плоскости. Пусть в пространстве заданы три различные точки М1(X1; Y1; Z1) M2(X2; Y2; Z2) M3(X3; Y3; Z3). Через эти три точки можно провести плоскость единственным образом. Рассмотрим точку M(X; Y; Z) лежащую в этой плоскости, тогда выполняется условие
Взаимное расположение плоскостей. 1) A1X + B1Y + C1Z + D1 = 0 2) A2X + B2Y + C2Z + D2 = 0. 1.Пусть плоскости 1 и 2 пересекаются. В этом случае имеются точки, принадлежащие одновременно плоскостям 1и 2. Поэтому система линейных уравнений, составленная из 1и 2 имеет по крайней мере, одно решение. Для этого необходимо и достаточно выполнения условия:
2. Если плоскость 1 параллельна 2, то это означает, что с.л.у. составленная из 1и2 не имеет решений. Для этого необходимо и достаточно выполнения условия:
Расстояние от точки до плоскости. Пусть точка М* - какая угодно точка пространства, d – расстояние от нее до данной плоскости. Отклонением d точки М* от данной плоскости называется число +d, если точка М* и начало координат лежат по разные стороны от данной плоскости, и число –d, если они расположены по одну сторону от данной плоскости. Если даны координаты X*, Y*,Z* точки М* и нормальное уравнение плоскости X cosa + Y cosb + Z cosg - p = 0, то отклонение d точки М* от этой плоскости может быть вычислено по формуле d = X* cosa + Y* cosb + Z* cosg - p. Очевидно d =
20. Прямая в пространстве.
Рассмотрим в пространстве две точки М1(X1; Y1; Z1) и M2(X2; Y2; Z2) можно провести единственную прямую. Пусть М(X; Y; Z) лежит на этой прямой, тогда векторы М1М2 и М1М каллинеарны М1М2(X2 – X1; Y2 –Y1; Z2 –Z1); M1M(X –X1; Y –Y1; Z – Z1). Из условия координат следует
Взаимное расположение прямых и плоскостей. Пусть дана плоскость Ax + By + Cz + D = 0 - 3) . Пусть дана прямая
21. Кривые второго порядка. Эллипс. Гипербола. Парабола.
Общее у-е кривых второго порядка:
После изменения начала координат и переноса начала координат в новую т. или поворта координатных осей, кривые второго порядка могут быть преобразованы к более простому (каноническому) виду. В результате преобразований у-е может описывать следующие линии: эллипс; гиперболу; параболу; пару êêпрямых; пара пересекающихся прямых; точка.
Эллипс.
Эллипсом называют геометрическое место точек на плоскости, сумма расстояний от которых до двух фиксированных точек, называемых фокусами, есть величина постоянная и большая чем расстояние между фокусами.
Пусть задан эллипс F1 и F2 – фокусы эллипса, выберем систему координат следующим образом, ось абсцисс проведём через фокусы, начало координат выберем между фокусами. F1(c;0), F2(-c,0), C>0.