При вычислении точечных оценок для удобства берут не сами элементы выборки, а середины частичных интервалов из интервального вариационного ряда (табл. 1) и применяют формулы:
где n - объем выборки,
– i-й элемент выборкиСоставим таблицу для нахождения
иi | ||
1 | 8.5*14=119 | |
2 | 18.5*6=111 | |
3 | 28.5*7=199.5 | |
4 | 38.5*12=462 | |
5 | 48.5*12=582 | |
6 | 58.5*7=409.5 | |
7 | 68.5*8=548 | |
8 | 78.5*12=942 | |
9 | 88.5*13=1150.5 | |
10 | 98.5*9=886.5 | |
6. Равномерный закон
интервальный вариационный генеральный совокупность
Выдвинута гипотеза о распределении генеральной совокупности Х по равномерному закону
найдем функцию плотности равномерного закона
вычислив оценки параметров иТ.к М(x)=
, , D(x)=i | |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
186 |
После того, как найдены значения функции плотности для каждого разряда, нанесем их прямо на гистограмму, получая тем самым кривую функции плотности
7 Проверка гипотезы о законе распределения генеральной совокупности по критерию Пирсона
В качестве меры расхождения между статистическим и гипотетическим (теоретическим) распределениями возьмем критерий Пирсона К = ч2.
Пирсон доказал, что значение статистического критерия не зависит от функции
и от числа опытов n, а зависит от числа частичных интервалов интервального вариационного ряда. При увеличении ч2, и находится по формуле:К =
или К =Дальнейшие вычисления, необходимые для определения расчетного значения выборочной статистики
, проведем в таблице 5.i | / | |||||
1 | 0.14 | 14 | 0.1029 | 10.29 | 13.76/10.37=1.33 | |
2 | 0.06 | 6 | 0.1 | 10 | 16/10=1.6 | |
3 | 0.07 | 7 | 0.1 | 10 | 16/10=1.6 | |
4 | 0.12 | 12 | 0.1 | 10 | 16/10=1.6 | |
5 | 0.12 | 12 | 0.1 | 10 | 16/10=1.6 | |
6 | 0.07 | 7 | 0.1 | 10 | 16/10=1.6 | |
7 | 0.08 | 8 | 0.1 | 10 | 16/10=1.6 | |
8 | 0.12 | 12 | 0.1 | 10 | 16/10=1.6 | |
9 | 0.13 | 13 | 0.1 | 10 | 16/10=1.6 | |
10 | 0.09 | 9 | 0.1149 | 11.49 | 6.3/11.49=0.548 | |
01.86 |
Чтобы найти значение
надо воспользоваться табличными распределениями в которых значение сл. величины находят по заданному уровню значимости и вычисленному числу степеней свободы