МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение образования
"Гомельский государственный университет имени Франциска Скорины"
Математический факультет Кафедра алгебры и геометрии
Допущена к защите
Зав. кафедрой Шеметков Л.А.
" " 2005г.
Дипломная работа
Свойство централизаторов конгруэнций универсальных алгебр
Исполнитель
студентка группы М-51
Шутова И.Н.
Руководитель
Д., ф-м н., профессор Монахов В.С.
Гомель 2005
Содержание
Введение
1. Основные определения и используемые результаты
2. Свойство централизаторов универсальных алгебр
3. Мультикольцо
Заключение
Список использованных источников
Введение
В теории формаций конечных групп, мультиколец и многих других алгебраических систем исключительно важную роль играют такие понятия, как локальные экраны, локальные формации, основанные на определении центральных рядов. Впервые понятие централизуемости конгруэнций было введено Смитом в работе [5]. Возникает задача согласованности определения централизуемости Смита с определением в группах и мультикольцах.Такая задача была решена в указанной работе Смита [5], где было показано:нормальная подгруппа
Возникает следующий вопрос: справедливо ли аналогичное утверждение для мультиколец, т.е. будут ли выполнятся свойства централизуемости, изложенные в работе [3], для универсальных алгебр.
В настоящей дипломной работе решается задача взаимосвязи структуры мультиколец и универсальных алгебр, получен новый результат: идеал
Дипломная работа включает в себя введение, три параграфа и список литературы из 10 наименований.
Перейдем к краткому изложению содержания дипломной работы.
Раздел 1 является вспомогательным и включает в себя все необходимые определения и используемые результаты.
Раздел 2 носит реферативный характер. Здесь приводятся свойства централизаторов конгруэнций, доказательства которых изложены в работах [5, 6, 7].
Раздел 3 является основным. Здесь вводится определение мультикольца, определение идеала мультикольца, определение централизатора идеала и с использованием данных определений доказывается основной результат работы (теоремы 3.4. и 3.5).
1. Основные определения и используемые результаты
Определение 1.1. [1] Универсальной алгеброй, или, короче, алгеброй называется пара
Определение 1.2. [1] Конгруэнцией на универсальной алгебре
Определение 1.3. [1] Если
Взаимно однозначный гомоморфизм называется изоморфизмом.
Теорема 1.1. [1] Пусть
является конгруэнцией на алгебре
Теорема 1.2. [1] Пусть
Теорема 1.3. [1] Пусть
Определение 1.4. [2] Непустой абстрактный класс алгебр
Многообразие
Теорема 1.4. [2] Конгруэнции любой алгебры многообразия
Определение 1.5. [3] Пусть
1) перспективными, если либо
2) проективными, если в
Теорема 1.5. [4] Между факторами произвольных двух главных рядов алгебры
Теорема 1.6. [2] (Лемма Цорна). Если верхний конус любой цепи частично упорядоченного множества
2. Свойство централизаторов конгруэнций универсальных алгебр
Под термином ``алгебра'' в дальнейшем будем понимать универсальную алгебру. Все рассматриваемые алгебры предполагаются входящими в фиксированное мальцевское многообразие