Теперь для построения - алгебры рассмотрим события , все их объединения и выразим полученные события через исходные . Очевидно: , , , . Парные объединения дают следующие события: , , ; , ; . Тройные объединения: , , , .
Таким образом, - алгебра содержит события: , , , ; , , , , , ; , , , , а также и - всего 16 событий.
Отметим, что при определении - алгебры порождающая система событий, как правило, составляется из событий, наблюдаемых в опыте.
Отметим, что события совпадают с событиями (8.1), которые рассматривались при выводе формулы сложения для частот. Действительно, , , и наконец, по формуле (6.1) .
17.5. Рассмотрим обобщение примера 4. Пусть исходная система событий - содержит произвольных событий . Для построения - алгебры, подобно примеру 4, введем события вида
, (17.3)
где каждое или , причем и . Поскольку каждое может принимать два значения 0 или 1, то число всех событий вида равно . Эти события образуют полную группу несовместных событий. Таким образом, события на - алгебре выполняют роль ортогонального базиса, позволяющего представить произвольное событие через несовместные (ортогональные в смысле операции пересечения) события . В теории множеств множества вида называются конституентами. Аппарат конституент позволяет показать, что в данном примере число всех событий - алгебры не превышает (включая и ), причем число событий достигает максимального значения, когда все отличны от (как в примере 4). Этот результат позволяет судить о высокой скорости роста числа событий в - алгебре в зависимости от - числа событий в исходной системе. Для примера 4 число , следовательно, число событий в - алгебре равно .
18.1. Пусть - вероятностное пространство. Рассмотрим интерпретацию условной вероятности события , если известно, что произошло событие , причем . При этих условиях пространством элементарных событий естественно считать не , а , поскольку тот факт, что произошло, означает, что речь идет лишь о тех элементарных событиях , которые принадлежат множеству . Среди элементарных событий , только те из них влекут событие , которые принадлежат . Поскольку событие отождествляется с множеством элементарных событий, влекущих , то теперь (при условии, что - произошло) событие следует отождествлять с множеством . Можно сказать, что множество есть событие , рассматриваемое с точки зрения, согласно которой пространством элементарных событий объявлено событие .