Рис. 2.1. График частоты появления герба как функции числа
бросаний монеты.
Естественно выдвинуть предположение о существовании предела,
, (2.2)
к которому стремится частота с увеличением числа опытов. Однако, это предположение не может быть доказано или отвергнуто опытом. Но опыт подтверждает более слабое утверждение об устойчивости частоты появления события. Факт статистической устойчивости и является эмпирической основой теории вероятностей и математической статистики.
Теория вероятностей - это математическая теория, которая дает описание экспериментов со случайными исходами, обладающих свойством статистической устойчивости. Теория вероятностей строится как аксиоматическая теория, то есть в ее основу положена система аксиом. В свою очередь аксиомы сформулированы на основе экспериментальных данных, а именно на свойствах частоты и, в частности, на факте статистической устойчивости, состоящем в тенденции частоты появления события стать постоянной и равной некоторому числу при большом числе повторений эксперимента .
Таким образом, при построении теории необходимо ввести число называемое вероятностью события , что реализуется с помощью одной из аксиом, которая называется аксиомой существования вероятности. Далее необходимо рассмотреть основные свойства частот и выразить эти свойства как утверждения относительно свойств вероятностей. Эти утверждения вместе с постулатом существования вероятности образуют систему аксиом теории вероятностей.
Частоту можно рассматривать как результат измерения (оценивания) вероятности по экспериментальным данным. Таким образом, равенство означает, что при большом числе опытов , а ошибка имеет тенденцию снижаться с увеличением . Поскольку , то частота появления события в серии из опытов удовлетворяет условию
. (3.1)
Аналогичному условию должна удовлетворять и вероятность:
. (3.2)
Рассмотрим значения вероятности на границах интервала . Пусть , тогда событие называется невозможным и обозначается символом . Для невозможного события его частота и имеет тенденцию приближаться к нулю с увеличением числа опытов. Если , то событие называется достоверным и обозначается символом . Частота достоверного события и с увеличением числа опытов имеет тенденцию приближаться к единице.
Рассмотрим основные операции над событиями и понятие алгебры событий. Пусть - некоторое событие.
1. Дополнением события называется событие , состоящее в том, что событие не произошло.
Операциям над событиями можно давать простую геометрическую интерпретацию. Рассмотрим такую интерпретацию операции дополнения. Пусть эксперимент состоит в случайном бросании точки на плоскость, при этом множество условий таково, что исход каждого опыта – это попадание точки в область плоскости, рис.4.1. Реализовать такой опыт можно,
Рис. 4.1. Событие и его дополнение .
бросая шарик радиуса в сосуд с плоским дном. При этом область – это та часть дна сосуда, в которую может попасть центр шарика, то есть области не принадлежит только полоса шириной около стенки сосуда. Пусть – подобласть области . Множества и точек плоскости можно рассматривать как события: – событие, состоящее в том, что случайно брошенная на плоскость точка попадет в область ; и событие – это попадание точки в область . По условию событие появляется в каждом опыте, его вероятность , следовательно, – достоверное событие. По определению – это событие, состоящее в том, что не произошло. Поэтому в данной интерпретации – это непопадание точки в область , то есть – попадание точки в заштрихованную область, рис.4.1.