Рис. 6.2. Дополнение объединения двух событий и .
штриховкой, – вертикальной штриховкой и – штриховкой "в клеточку".
Рис. 6.3. Пересечение дополнений двух событий и .
Таким образом, левая и правая части соотношения (6.1) совпадают.
Пусть события и имеют вероятности и . Рассмотрим вероятность события , если известно, что произошло событие . При этом в общем случае вероятность события изменяется и становится отличной от . Эта вероятность обозначается и называется условной вероятностью события при условии, что произошло, или просто – вероятностью при условии .
Следует различать две ситуации. 1). Если , то события и зависимые. 2). Если , то события и независимые. Рассмотрим пример: бросание игральной кости. Пусть событие - это выпадение единицы, - выпадение нечетного числа. Тогда =1/6, а =1/3, следовательно и - зависимые события.
Если - результат опыта, то называют доопытной или априорной вероятностью события , а условную вероятность - послеопытной или апостериорной вероятностью события .
Образуем из событий и с помощью операций дополнения и пересечения следующие четыре события:
. (8.1)
Система четырех событий (8.1) является полной группой несовместных событий. Действительно, пересечение любых двух событий из этой системы является невозможным событием. Например, пересечение первого и второго событий: . Таким образом, первое и второе события в (8.1) несовместны. Аналогично можно показать несовместность двух любых событий из (8.1). Теперь рассмотрим объединение всех событий системы (8.1):
где - достоверное событие. Поскольку (8.1) полная группа несовместных событий, то в каждом опыте происходит одно и только одно событие из возможных четырех событий (8.1).
Пусть эксперимент выполнялся раз, и в качестве его исхода событие наблюдалось раз, событие наблюдалось раз, событие - раз и событие - раз. Очевидно,
. (8.2)
Частоты появления событий (8.1) определяются соотношениями:
. (8.3)
Рассмотрим объединение первого и второго событий (8.1):
. Поэтому частота
. (8.4)
Аналогично и частота события имеет вид:
. (8.5)
Теперь рассмотрим объединение первых трех событий системы (8.1):
. (8.6)
Отсюда:
. (8.7)
Сравнивая (8.3) - (8.5), (8.7), получаем равенство:
, (8.8)
которое представляет собой формулу (или теорему) сложения частот.
Отсюда следует, что в аксиомах теории вероятностей должна быть определена формула сложения вероятностей, аналогичная соотношению (8.8):
. (8.9)
Если события и несовместны, то =0 и формула сложения вероятностей принимает вид:
. (8.10)
Объединение первых двух событий системы (8.1) . В последовательности из опытов событие появилось раз, а событие - раз. Поэтому событие появилось раз. Определим число появлений события при условии, что событие произошло. Событие происходит, если происходит или , число таких исходов равно , при этом событие происходит, если происходит , число таких исходов равно . Таким образом, условная частота появления события при условии, что произошло