Алгебра и начало анализа (стр. 4 из 6)
№ 16
- Формулы косинуса суммы и разности двух аргументов:
Рис.1 Рис.2
Повернем радиус ОА, равный R, около точки О на угол и на угол (рис.1). Получим радиусы ОВ и ОС. Найдем скалярное произведение векторов и . Пусть координаты точки В равны х1 и y1, координаты точки С равны х2 и y2. Эти же координаты имеют соответственно и векторы и . По определению скалярного произведения векторов:
= х1х2 + y1y2. (1)
Выразим скалярное произведение через тригонометрические функции углов и . Из определения косинуса и синуса следует, что
х1 = R cos , y1 = R sin , х2 = R cos , y2 = R sin .
Подставив значения х1, х2, y1, y2 в правую часть равенства (1), получим:
= R2cos cos + R2sin sin = R2(cos cos + sin sin ).
С другой стороны, по теореме о скалярном произведении векторовимеем:
= cos BOC = R2cos BOC.
Угол ВОС между векторами и может быть равен - (рис.1), - ( - ) (рис.2) либо может отличаться от этих значений на целое число оборотов. В любом из этих случаев cos BOC = cos ( - ). Поэтому
= R2 cos ( - ).
Т.к. равно также R2(cos cos + sin sin ), то
cos( - ) = cos cos + sin sin .
cos( + ) = cos( - (- )) = cos cos(- ) + sin sin(- ) = cos cos - sin sin .
Значит,
cos( + ) = cos cos - sin sin . - Формулы синуса суммы и разности двух аргументов:
sin( + ) = cos( /2 - ( + )) = cos(( /2 - ) - ) = cos( /2 - ) cos + sin( /2 - ) sin = sin cos + cos sin .
Значит,
sin( + ) = sin cos + cos sin .
sin( - ) = sin( + (- )) = sin cos(- ) + cos sin(- ) = sin cos - cos sin .
Значит,
sin( - ) = sin cos - cos sin .
№ 17