- Функция заданная формулой y = kx + b, где k и b - некоторые числа, называется линейной.
- Областью определения линейной функции служит множество R всех действительных чисел, т.к. выражение kx + b имеет смысл при любых значениях х.
- График линейной функции y = kx + b есть прямая. Для построения графика, очевидно, достаточно двух точек, если k
0. - Коэффициент k характеризует угол, который образует прямая y = kx с положительным направлением оси Ох, поэтому k называется угловым коэффициентом. Если k > 0, то этот угол острый; если k < 0 - тупой; если k = 0, то прямая совпадает с осью Ох.
- График функции y = kx + b может быть постпоен с помощью параллельного переноса графика функции y = kx.
Ответ №2. Опр. Квадратичной функцией называется функция, которую можно задать формулой вида y = ax2 + bx + c, где х - независимая переменная, а, b и с - некоторые числа, причем а

0.
Графиком квадратичной функции является парабола.
Свойства функции y = ax
2(частный случай) при а > 0.
1. Если х = 0, то y = 0. График функции проходит через начало координат.
2. Если х

0, то y > 0. График функции расположен в верхней полуплоскости.
3. График функции симметричен относительно оси Oy.
4. Функция убывает в промежутке (-

; 0] и возрастает в промежутке [0; +

).
5. Наименьшее значение функция принимает при х = 0. Область значений функции [0; +

).
Свойства функции y = ax
2 при а < 0.
1. Если х = 0, то y = 0. График функции проходит через начало координат.
2. Если х

0, то y < 0. График функции расположен в нижней полуплоскости.
3. График функции симметричен относительно оси Oy.
4. Функция убывает в промежутке [0; +

) и возрастает в промежутке (-

; 0].
5. Наименьшее значение функция принимает при х = 0. Область значений функции (-

; 0].
И, так, график функции y = ax
2 + bx + c есть парабола, вершиной которой является точка (m; n), где m =

, n=

. Осью симметрии параболы служит прямая х = m, параллельная оси y. При а > 0 ветви параболы направлены вверх, при a < 0 - вниз.

Ответ 3
Если переменная у обратно пропорциональна переменной х, то эта зависимость выражается формулой

, где

- коэффициент обратной пропорциональности.
- Область определения функции
- есть множество всех чисел, отличных от нуля, т. е.
. - Графиком обратной пропорциональности у=k/x является кривая, состоящая из двух ветвей, симметричных относительно начала координат. Такая кривая называется гиперболой. Если k>0, то ветви гиперболы расположены в I и III координатных четвертях; если же k<.0, то во II и IV координатных четвертях.
- Заметим, что гипербола не имеет общих точек с осями координат, а лишь сколь угодно близко к ним приближается.

№ 4. Опр. Функция, заданная формулой y = ax, где а - некоторое положительное число, не равное еденице, называется показательной.
1. Функция y = ax при а>1
а) область определения - множество всех действительных чисел;
б) множество значений - множество всех положительных чисел;
в) функция возрастает;
г) при х = 0 значение функции равно 1;
д) если х > 0, то ax > 1;
е) если х < 0, то 0< ax <1;
2. Функция y = ax при 0< а <1
а) область определения - множество всех действительных чисел;
б) множество значений - множество всех положительных чисел;
в) функция убывает;
г) при х = 0 значение функции равно 1;
д) если х > 0, то 0< ax <1;
е) если х < 0, то ax > 1.

№5.Опр. Функцию, заданную формулой y = loga x называют логарифмической функцией с основанием а.
Свойства функции y = loga x при a>1:
а) D(f) = R+;
б) E(f) = R;
в) функция возрастает;
г) если x = 1, то loga x = 0;
д) если 0<x<1, то loga x < 0;
е) если x > 1, то loga x > 0.
Свойства функции y = loga x при 0<a<1:
а) D(f) = R+;
б) E(f) = R;
в) функция убывает;
г) если x = 1, то loga x = 0;
д) если 0 < x < 1, то loga x > 0;
е) если x > 1, то loga x < 0.