Смекни!
smekni.com

Решение задач на построение сечений многогранников (стр. 3 из 3)

3)Пересекаем прямую, образованную двумя заданными точками, с прямой образованной проекциями этих же точек.(MK и M’K’). Полученная точка (P1) принадлежит следу секущей плоскости на плоскости основания. Находим вторую точку (P2) и строим прямую (след секущей плоскости).
3)
4) Далее, для нахождения точек пересечения с ребрами многогранника, от точки пересечения ребра с плоскостью основания проводим прямую, проходящую через проекцию, заданной в условии задачи точки (AK’). От точки пересечения этой прямой со следом секущей плоскости (K”) проводим прямую (K”K), проходящую через точку, проекция которой перед этим использовалась. Пересечение этой прямой с ребром, на котором ищется пересечение с плоскостью сечения, является искомой точкой (A’). 5) соединяем все найденные точки.
4)
5)

Примеры задач.

1) Постройте сечение куба плоскостью проходящей через точки, указанные на рисунке

2) Постройте сечение правильной четырехугольной пирамиды плоскостью, через точки, указанные на рисунке.

3) Постройте сечение правильной шестиугольной призмы плоскостью, проходящей через точки, указанные на рисунке.

4) Меньший куб поставлен на больший таким образом, что они имеют общую вершину и их грани параллельны. Постройте сечение полученной фигуры плоскостью, проходящей через три точки, лежащие на скрещивающихся ребрах меньшего куба.


Решение:

1)

А) проводим линию пересечения с гранью куба (АВ) Б) проводим параллельную ей (АВ)на противолежащей грани (ЕС) В) проводим ЕА Г) проводим прямую BD||EA Д) Соединяем D c C Сечение (ABDCE) построено.

2)

А) проецируем на плоскость основания, путем центрального проецирования из вершины, точки В и С, получая точки: B’ и C’. Б) пересекаем прямые B’C’ и BC, находим точку P’ В) пересекаем AP’ и D’C’, находим точку D”. Г) пересекаем D”C и SD’, находим D ABDC – сечение.