Лемма. Для того чтобы , необходимо и достаточно, чтобы каждый -класс содеожался в некотором -классе.
Действительно, если
, то из следует . Зчачит, множество всех , -эквивалентных элементу , содержится во множестве всех , -эквивалентных этому . Обратный вывод столь же очевиден.Для того чтобы необходимо и достаточно, чтобы каждый -класс содержал любой -класс , имеющий с непустое пересечение.
Для доказательства необходимости выберем произвольный элемент
. По предыдущей лемме целиком содержится в некотором классе . Но если бы был бы отличен от , то элемент был бы сразу в двух классах -разбиения, что невозможно. Значит, . Для доказательства достаточности нужно только вспомнить, что из по условию вытекает , и применить лемму 1.3.1.Для того чтобы эквивалентности и были когерентными, необходимо и достаточно, чтобы всякий -класс либо содержался в некотором -классе , либо целиком содержал любой -класс , имеющий с непустое пересечение.
Доказательство. Eсли
и когерентны, то , и на , имеем , а на . Тогда по лемме 1.3.1 для каждого класса , содержащегося в , существует такой класс , что . По лемме 1.3.2 каждый класс , содержащийся в , целиком содержит любой класс , имеющий с непустое пересечение. Поскольку и не пересекаются, из вытекает, что всякий класс эквивалентности содержится либо в , либо в ; значит, наше рассуждение охватывает все классы.Проведем доказательство в обратную сторону. Пусть каждый класс
обладает сформулированным в лемме 1.2.3 свойством. Обозначим через объединение всех тех классов , для которых существует такой , что , а через – объединение остальных классов . Ясно, что , и , , где и – сужения отношений и на . Наконец, очевидно, что и , т.е. и когерентны.Теперь мы подготовили все необходимое для доказательства теоремы 1.3.1. Будем вести доказательство от противного, т.е. предположим, что
и не когерентны. Тогда по лемме 1.3.3 существует класс и класс такиее, что , но не один из них не содержит другой. Значит, существуетвует , существует , существует . Имеем следующие соотношения: и , следовательно, и . По транзитивности должно было бы быть также . Однако, соотношения: и – оба не выполнены, так как не лежит с ни в общем -классе, ни в общем -классе. Значит, соотношение не выполнено. Полученное противоречие доказывает теорему.