c(а)= c(А), если аÎА,
где А – приведенный класс вычетов по модулю m. Тогда очевидно, c(а)= c(b) (modm), и c(ab)= c(а) c(b), если (а, m)=(b, m)=1. Поскольку c(А)¹0 для каждого приведенного класса вычетов А, то c(а)¹0, если (a, m)=1.
Это определение применимо только к целым числам а, которые взаимно просты с m.
Мы можем рассмотреть его на все целые числа, положив
c(а)=0, если (a, m)>1.
Следовательно, характер по модулю m есть арифметическая функция c, обладающая следующими свойствами:
c(а)= c(b), если с=b (modm)
c(ab)= c(a) c(b) для всех целых a и b
c(а)=0, если (a, m)>1
c(а)¹0, если (a, m)=1
Имеется точно j(m) – количество характеров по модулю m, где j(m) – количество положительных целых чисел, не превосходящих m и взаимно простых с m. Они образуют мультипликативную абелеву группу приведенных классов вычета по modm. Единичным элементом этой группы будет главный характер c1, то есть такой характер, что c1(а)=1, если (а, m)=1. Далее имеем следующее соотношение ортогональности:
= { = {Пусть m – положительное целое число. Определим числовые характеры по модулю m. Комплекснозначная функция, определенная для всех целых чисел n, называется числовым характером или характером Дирихле по модулю m, она удовлетворяет следующим условиям:
а) c (n) = 0 тогда и только тогда, когда (n, m) ≠ 1
б) c (n) периодична с периодом m
в) для любых чисел а и b
c (аb) = c (а) c (b)
Функция
c1(n) = {
является числовым характером и называется главным характером. Остальные числовые характеры по модулю m называются неглавными.
Имеет место следующее утверждение о числовых характерах.
Теорема 1 Существует равно φ(m) числовых характеров по модулю m. Если c = c (n) – числовой характер по модулю m, то:
1) для n, взаимно простых с модулем m, значения c (n) есть корень из 1 степени φ(m).
2) для всех n выполняется неравенство /c (n)/ ≤1
3) Имеет место равенство
{4) Для каждого целого числа n
= {Доказательство. Пусть c (n) – некоторый числовой характер по модулю m. Из пункта б) определения следует, что c (n) задает некоторую функцию c’(
) = c (n) на мультипликативной группе классов вычетов по модулю m, взаимно простых с m, а именноc’(
) = c (n)Здесь
обозначает класс вычетов по модулю m, содержащий n. Так как c(1) ≠ 0, то c’( ) не равняется тождественно нулю, а из пункта в) определения числового характера следует, что c’( ) = c’( ) = c’ (ab) = c (a) c (b) = c’( )c’( ).Таким образом, c’(
) есть характер модультипликативной группы Gm.Обратно, по каждому характеру c’(
) группы Gm можно построить числовой характер c (n) по модулю m, положив {Установленное соответствие является взаимнооднозначным. И все утверждения теоремы 1 следуют из доказанного выше для групповых характеров применительно к группе Gm, если учесть, что порядок группы Gm равен φ(m), где φ(m) – функция Эйлера.
В дальнейшем требуется еще одно утверждение с числовых характерах. Обозначим для каждого c, c ≥ 1
Где суммирование ведется по всем натуральным числам n, не превосходящим c.
Лемма 2. Пусть c (n) – неглавный характер. Тогда для каждого c, c ≥ 1 справедливо неравенство
/S(x)/<m
Доказательство. Функция c (n) периодична с периодом m и по теореме з
0, так как c≠ c1Поэтому, представив [c] – целую часть числа c – в виде [c]=m1+z, 0£z£m, будет иметь
S(c) =S([c])=q
В виду равенства /c(n)/£1 отсюда получили S(c)£z£m
Пусть х(п) – произвольный характер по модулю m. Рассмотрим ряд
, (2.1)члены которого являются функциями комплексного переменного S. В области сходимости он определяет функцию, которая называется L-функцией Дирихле, соответствующей характеру c(n), и обозначается L (s, c).
Лемма 3
1. Если c¹c1, то ряд (1) сходится в области ReS > 0 и определяемая им функция L (s, c) является аналитической в этой области.
2. Ряд, определяющий L (S, c1), сходится в области ReS >1. Функция L(S, c1) является аналитической в области ReS > 1.
Доказательство.
Пусть c(n) – произвольный характер по модулю m, а б – некоторое положительное число. Так как /c(n)/ £ 1, то в области ReS > 1 + б справедливо неравенство
Следовательно, ряд (1) равномерно сходится в области ReS > 1 + б. Определяемая им функция L (S, c) по теореме Вейерштрасса о сумме равномерно сходящегося ряда аналитических функций является аналитической в этой области. Ввиду произвольности 6 это доказывает второе утверждение Леммы.
Для неглавных характеров c(n) потребуется более сложное исследование ряда (1).
Лемма 4 (преобразование Абеля).
Пусть an, n=1,2,…, – последовательность комплексных чисел, c>1,
А(c)=
а q(t) – комплекснозначная функция, непрерывно дифференцируемая на множестве 1£t£¥
Тогда
(2.2)Если же
то
(2.3)при условии, что ряд в левой части равенства сходится.
Доказательство. Положим А(0)=0 и В(х) равным левой части равенства (2.2). Тогда при любом натуральном N
так как А(0)=0. Далее
поскольку функция А(х) постоянна на каждом полуинтервале n£t<n+1. Следовательно, равенство (2.2) доказано при целых значениях х.
пусть х³1 – произвольное число. Положим N=[x]; значит, N£x£N+1. Тогда А(х)=А(N), B(x)=B(N), а
Следовательно,
Тем самым доказано, что равенство (2.2) верно и для нецелых чисел значений х.
Равенство (2.3) получаем из равенства (2.2) переходом к пределу при х®¥. Лемма доказана.
Воспользовавшись леммой 4, получим следующее равенство
(2.4)где
функция, введенная Лемме 4.
Для s = p+it из области ReS = s, где s – некоторое положительное число, пользуясь леммой 4, находим
Поэтому интеграл
сходится в области ReS > s. Поскольку в этой области выполняется неравенство
то из равенства (2) следует, что ряд (1), определяющий функцию L (S, x), сходится в области ReS > s. Эти рассуждения справедливы для любого положительного числа s. Значит, ряд (1) сходится в полуплоскости ReS> 0.
Из равенства (2) следует, что в этой полуплоскости для L-функции, соответствующей неглавному характеру c(n), справедливо представление
(2.5)так как
Интеграл, стоящий в правой части равенства (2.5), можно также представить в виде