Смекни!
smekni.com

Теорема Дирихле (стр. 2 из 4)

c(а)= c(А), если аÎА,

где А – приведенный класс вычетов по модулю m. Тогда очевидно, c(а)= c(b) (modm), и c(ab)= c(а) c(b), если (а, m)=(b, m)=1. Поскольку c(А)¹0 для каждого приведенного класса вычетов А, то c(а)¹0, если (a, m)=1.

Это определение применимо только к целым числам а, которые взаимно просты с m.

Мы можем рассмотреть его на все целые числа, положив

c(а)=0, если (a, m)>1.

Следовательно, характер по модулю m есть арифметическая функция c, обладающая следующими свойствами:

c(а)= c(b), если с=b (modm)

c(ab)= c(a) c(b) для всех целых a и b

c(а)=0, если (a, m)>1

c(а)¹0, если (a, m)=1


Имеется точно j(m) – количество характеров по модулю m, где j(m) – количество положительных целых чисел, не превосходящих m и взаимно простых с m. Они образуют мультипликативную абелеву группу приведенных классов вычета по modm. Единичным элементом этой группы будет главный характер c1, то есть такой характер, что c1(а)=1, если (а, m)=1. Далее имеем следующее соотношение ортогональности:

= {

= {

Пусть m – положительное целое число. Определим числовые характеры по модулю m. Комплекснозначная функция, определенная для всех целых чисел n, называется числовым характером или характером Дирихле по модулю m, она удовлетворяет следующим условиям:

а) c (n) = 0 тогда и только тогда, когда (n, m) ≠ 1

б) c (n) периодична с периодом m

в) для любых чисел а и b

c (аb) = c (а) c (b)

Функция

c1(n) = {

является числовым характером и называется главным характером. Остальные числовые характеры по модулю m называются неглавными.

Имеет место следующее утверждение о числовых характерах.

Теорема 1 Существует равно φ(m) числовых характеров по модулю m. Если c = c (n) – числовой характер по модулю m, то:

1) для n, взаимно простых с модулем m, значения c (n) есть корень из 1 степени φ(m).

2) для всех n выполняется неравенство /c (n)/ ≤1

3) Имеет место равенство

{

4) Для каждого целого числа n

= {

Доказательство. Пусть c (n) – некоторый числовой характер по модулю m. Из пункта б) определения следует, что c (n) задает некоторую функцию c’(

) = c (n) на мультипликативной группе
классов вычетов по модулю m, взаимно простых с m, а именно

c’(

) = c (n)

Здесь

обозначает класс вычетов по модулю m, содержащий n. Так как c(1) ≠ 0, то c’(
) не равняется тождественно нулю, а из пункта в) определения числового характера следует, что c’(
) = c’(
) = c’ (ab) = c (a) c (b) = c’(
)c’(
).

Таким образом, c’(

) есть характер модультипликативной группы Gm.

Обратно, по каждому характеру c’(

) группы Gm можно построить числовой характер c (n) по модулю m, положив

{

Установленное соответствие является взаимнооднозначным. И все утверждения теоремы 1 следуют из доказанного выше для групповых характеров применительно к группе Gm, если учесть, что порядок группы Gm равен φ(m), где φ(m) – функция Эйлера.

В дальнейшем требуется еще одно утверждение с числовых характерах. Обозначим для каждого c, c ≥ 1

Где суммирование ведется по всем натуральным числам n, не превосходящим c.

Лемма 2. Пусть c (n) – неглавный характер. Тогда для каждого c, c ≥ 1 справедливо неравенство

/S(x)/<m

Доказательство. Функция c (n) периодична с периодом m и по теореме з

0, так как c≠ c1

Поэтому, представив [c] – целую часть числа c – в виде [c]=m1+z, 0£z£m, будет иметь


S(c) =S([c])=q

В виду равенства /c(n)/£1 отсюда получили S(c)£z£m

2. L-функция Дирихле

Пусть х(п) – произвольный характер по модулю m. Рассмотрим ряд

, (2.1)

члены которого являются функциями комплексного переменного S. В области сходимости он определяет функцию, которая называется L-функцией Дирихле, соответствующей характеру c(n), и обозначается L (s, c).

Лемма 3

1. Если c¹c1, то ряд (1) сходится в области ReS > 0 и определяемая им функция L (s, c) является аналитической в этой области.

2. Ряд, определяющий L (S, c1), сходится в области ReS >1. Функция L(S, c1) является аналитической в области ReS > 1.

Доказательство.

Пусть c(n) – произвольный характер по модулю m, а б – некоторое положительное число. Так как /c(n)/ £ 1, то в области ReS > 1 + б справедливо неравенство

Следовательно, ряд (1) равномерно сходится в области ReS > 1 + б. Определяемая им функция L (S, c) по теореме Вейерштрасса о сумме равномерно сходящегося ряда аналитических функций является аналитической в этой области. Ввиду произвольности 6 это доказывает второе утверждение Леммы.

Для неглавных характеров c(n) потребуется более сложное исследование ряда (1).

Лемма 4 (преобразование Абеля).

Пусть an, n=1,2,…, – последовательность комплексных чисел, c>1,

А(c)=

а q(t) – комплекснозначная функция, непрерывно дифференцируемая на множестве 1£t£¥

Тогда

(2.2)

Если же

то

(2.3)

при условии, что ряд в левой части равенства сходится.

Доказательство. Положим А(0)=0 и В(х) равным левой части равенства (2.2). Тогда при любом натуральном N

так как А(0)=0. Далее


поскольку функция А(х) постоянна на каждом полуинтервале n£t<n+1. Следовательно, равенство (2.2) доказано при целых значениях х.

пусть х³1 – произвольное число. Положим N=[x]; значит, N£x£N+1. Тогда А(х)=А(N), B(x)=B(N), а

Следовательно,

Тем самым доказано, что равенство (2.2) верно и для нецелых чисел значений х.

Равенство (2.3) получаем из равенства (2.2) переходом к пределу при х®¥. Лемма доказана.

Воспользовавшись леммой 4, получим следующее равенство

(2.4)

где

функция, введенная Лемме 4.

Для s = p+it из области ReS = s, где s – некоторое положительное число, пользуясь леммой 4, находим


Поэтому интеграл

сходится в области ReS > s. Поскольку в этой области выполняется неравенство

то из равенства (2) следует, что ряд (1), определяющий функцию L (S, x), сходится в области ReS > s. Эти рассуждения справедливы для любого положительного числа s. Значит, ряд (1) сходится в полуплоскости ReS> 0.

Из равенства (2) следует, что в этой полуплоскости для L-функции, соответствующей неглавному характеру c(n), справедливо представление

(2.5)

так как

Интеграл, стоящий в правой части равенства (2.5), можно также представить в виде


(2.6)