Члены ряда (2.6) являются аналитическими функциями в области ReS >s, что следует из равенств
При этом использовано, что на полуинтервале n£х< n+1 функция S(х) принимает значение S(n). Поскольку
то ряд (2.6) равномерно сходится в области ReS >s. Отсюда, как и выше, получаем, что сумма его, т.е.
является аналитической функцией (по теореме Вейерштраса) в области ReS >s.
Из представления (2.5) следует теперь, что L (S, x) есть аналитическая функция в полуплоскости ReS >s, а ввиду произвольности S – s и b полуплоскости ReS > 0.
Следствие. Пусть c (n) – произвольный характер. Тогда в области ReS > 1 справедливо равенство
Это следует из того, что ряд (2.1) по доказанному равномерию сходится в области ReS>1+s, где s>0. Следовательно, по теореме Вейштрасса о равномерно сходящихся рядах аналитических функций в этой области ряд (2.1) можно почленно дифференцировать
Поэтому в полуплоскости ReS>1+s выполняется равенство (2.7). Так как в этом рассуждении s-любое положительное число, то равенство (2.7) будет справедливо в полуплоскости ReS>1.
Для L-функций имеет место представление в виде бесконечного произведения по простым числам, аналогичное тождеству Эйлера. Рассмотрим вспомогательную Лемму.
Лемма 5. Пусть функция f(n) вполне мультипликативна и ряд
(2.8)абсолютно сходится. Тогда выполняется равенство
(2.9)Доказательство. Отметим прежде всего, что /f(n)/<1 при любом натуральном n>1. В противном случае при каждом mÎN
/f(n)m/=/f(n)/m³1,
что противоречит сходимости ряда (2.6). Поэтому при каждом простом р ряд
абсолютно сходится, и его сумма как сумма бесконечно убивающей геометрической прогрессии равна (1-f(р))-1. Кроме этого, в силу абсолютной сходимости, ряды можно перемножить. Перемножая конечное число таких рядов и используя то, что f(n) есть вполне мультипликативная функция, получим
где ne= pa … pas и в сумме в правой части равенства содержатся такие и только такие слагаемые f(ne), что все просты делители neне превосходят х. Следовательно, в разности
остаются те и только те слагаемые f(me), для которых у числа me имеется хотя бы один простой делитель р>x. Тогда оценим разность
/S-S(x)/£
и из абсолютной сходимости ряда (2.8) следует, что
Это доказывает, что бесконечное произведение (2.7) сходится и выполняется утверждение Леммы.
Лемма 6. Для каждого характера c(n) в области ReS > 1 справедливо представление
Доказательство. Эта лемма является следствием Леммы 5, поскольку функция c(n) вполне мультипликативна, то есть c(АВ)= c(А) c(В), и выполняется неравенство /c(n)/£ 1 по теореме 1.
Следствие 1. В области ReS > 1 для главного характера c1(n) по модулю m справедливо равенство
(2.10)и поэтому функция L (S, c1) может быть аналитически продолжена в область ReS> 0, где она имеет единственный полюс (первого порядка) в точке S=1.
Действительно, по определению главного характера c1(n) имеет место равенство
Поэтому
Пользуясь теперь тождеством Эйлера для дзета-функции Римана получаем равенство (2.10). Остальные утверждения легко следуют из этого равенства, поскольку дзета-функция является аналитической в области ReS > 0 с единственным полюсом первого порядка в точке S = 1.
Следствие 2. Для каждого характера c функция L (S, x) не обращается в нуль в области ReS > 1.
Доказательство.
Если s = ReS > 1. то
Пользуясь неравенством для дзета-функции Римана, находим
Получаем:
L(S,c) ≥
> 0Теперь докажем утверждения, что L – функция, соответствующая неглавному характеру c, точке S =1 отлична от нуля.
Теорема 2. Если c – неглавный характер, то L(1, c)≠0
Для доказательства рассмотрим 2 случая
1. Пусть характер c – комплексное число, не является действительным. Тогда характер c2(n) не является главным. В этом случае доказательство теоремы будет основываться на тех же идеях, что и доказательство отсутствия нулей дзета – функции на прямой ReS=1.
Лемма7. Пусть 0<ч<1, а х – действительное число, тогда выполняется неравенство /(1 – ч)3 (1 – чеix)4 (1 – че2ix)/-1 ≥ 1
Доказательство.
Для всех z из круга /z/<1 имеет место расположение
– ln (1 – z) =
(2.11)Так как ln(t) = Relnt, то обозначая М (ч φ), левую часть неравенства (2.11), получим
lnM(ч φ) = 3ln(1 – ч) – 4 ln (1 – чеi4) – ln (1 – че2i4) = – 3ln(1-ч) – 4Reln/1 – чеi4/ – Reln/1 – че2i4/=
rc(3+4e)inl/1-rei4/= (3+4cosnl+2cos2nl)= (2+4cosa+1+cos2a)= 1 (1+cosa)2³0ln=M(r, l)=³0
Следовательно, M(r, l)=³1 доказана.
Из леммы 7 следует, сто при любом действительном S>1 выполняется равенство:
|L3(8,c1) L4(S,c) 4 (S,c4) 1 = П (1-
)3(1- )4(1- )|-1 (2.12)Получая в лемме ч = р-s, т.е.
0< ч = c1(р)<1
0< р-s<1
c (р) р-s = чеi4, в силу того что c (р) – комплексное
c (р) р-s= че2i4
Получаем, что каждый сомножитель в правой части равенства (f) не меньше 1 и, следовательно, при любом S>1 выполняется равенство:
|L3(Sc1) · L4(Sc) L(Sc2)| ≥ 1 (2.13)
Допустим, что для некоторого характера c (c2≠c1) выполняется равенство
L (1, c) = 0 (2.14)
Оценим сверху левую часть неравенства. Из оценки дзета-функции Римана
ξ(S) ≤
, следует, что при S € R, S>1 выполняется неравенствоа) 0 < 4 (S, c1) =
получили 0<L(S, c1)≤
б) Функция L(S, c) разложим в ряд Тейлора
L (S, c) = Cp + C1 (S – 1) + C2(S – 1)2 +… + Cn(S – 1)n +…
Предположим, что у нее есть нуль L(1, c) = 1; тогда С0 = 0
Перепишем разложение L – функции в ряд
L(Sc) = Cк (S – 1)к + Ск+1(S – 1)к+1 = (S – 1)1 (Cк + Ск+1(S -1)+….), гдек≥1, Ск ≤ 0, т. к. S>1
| L (S, c)| = |S – 1|k| Ck + Ck+1(S – 1) +….| ≤ 2 Ck|S – 1)k, при |S – | < r
Функция L (S, c2) в точке S = 1 не имеет полюса, следовательно не имеет особенности. Это в силу того, что c комплексное и c2≠c1
Получаем неравенство:
L(S, c2) ≤ C,
При условии | S – 1|< δ
Учитывая все неравенства и оценки
| L3 (S, c) L4(S, c) L (S, c2)| = (
)3 · 24 |Ck|4 (S – 1)4k· C≥1Следовательно, это неравенство становится противоречивым, если перейти к пределу при S→1+0. Полученное противоречие показывает, что равенство (2.14) не выполняется.
2. Рассмотрим c – вещественный характер, т.е. принимающий только вещественные значения, несовпадающий с главным характером
Лемма 8. Пусть c – вещественный характер.
Рассмотрим функцию
F(S) = ξ(S) L(S, x) (2.15)
Докажем, что если ReS>1, то
(2.16)представляется рядом Дирихле, которого справедливы следующие утверждения:
1) Все коэффициенты аn≥ 0
2) при n=k2, k € / N(N)/ аn≥1
3) В области ReS<1 можно почленно дифференцировать, то есть