Перейдем теперь к доказательству единственности. Пусть
и - два решения уравнения (1) с общими начальными значениями , и — интервал, являющийся пересечением интервалов существования решений и ; очевидно, что . Покажем, что если решения и совпадают в некоторой точке интервала , то они совпадают и на некотором интервале , где r – достаточно малое положительное число. Положим ; тогда величины , могут быть приняты за начальные значения обоих решений и . В этом смысле точка ничем не отличается от точки , и поэтому мы сохраним за точкой обозначение : это позволит нам сохранить и другие прежние обозначения. Переходя от дифференциального уравнения (1) к интегральному уравнению (4), мы получаем для обеих функций и интегральные равенства, которые в операторной форме могут быть записаны в виде: . (24)Выберем теперь, как и прежде, в открытом множества Г прямоугольник П с центром в точке
, а затем прямоугольник таким образом, чтобы число r кроме неравенств (14), (17), (20) удовлетворяло еще тому условию, что при функции и определены и удовлетворяют неравенствамЭто возможно, так как функции
и непрерывны. Тогда функции и , рассматриваемые на отрезке , входят в семейство , и, следовательно, в силу неравенства (16) и соотношений (24) получаем: ,а это возможно только тогда, когда
, т.е. когда функции и совпадают на отрезке .Докажем теперь, что функции
и совпадают на всем интервале . Допустим противоположное, именно, что существует точка интервала , для которой . Ясно, что . Для определенности будем считать, чтоОбозначим через N множество всех тех точек
отрезка , для которых , и докажем, что множество N замкнуто. В самом деле, пусть – последовательность точек множества N, сходящаяся к некоторой точке . Тогда , и потому, в силу непрерывности функций и , ,т.е. точка
также принадлежит множеству N.Обозначим через
точную верхнюю грань множества N. Так как N замкнуто, то принадлежит этому множеству, т. е. ; следовательно, . Но тогда, в силу ранее доказанного, функции и должны совпадать на некотором интервале , и точка не может быть точной верхней гранью множества N. Таким образом, мы пришли к противоречию.Итак, теорема 1 доказана.
Для весьма простого уравнения
найдем решение методом последовательных приближений. Решение будем искать с начальными значениямиСоответствующее интегральное уравнение запишется в виде:
Будем строить теперь последовательность
Мы имеем:
, , , ,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
,. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Пределом этой последовательности (равномерно сходящейся на любом отрезке числовой оси) является функция
.§13. Доказательство теоремы существования и единственности для нормальной системы уравнений
Здесь будет доказана сформулированная и §2 теорема 2 существования и единственности для нормальной системы уравнений
правые части
которые вместе с их частными производными определены и непрерывны на некотором открытом множестве Г пространства переменных . Полагая