Смекни!
smekni.com

Система дифференциальных уравнений с постоянными коэффициентами (стр. 6 из 26)

(2)

Отметим несколько непосредственно проверяемых свойств линейных систем. При их формулировке будет предполагаться, что все коэффициенты и свободные члены линейной системы определены и непрерывны на интервале

; все рассматриваемые решения будут предполагаться заданными на всем интервале
.

А) Если

и
;
- два решения линейной однородной системы (2), а
и
- два произвольных числа, то система функций

также представляет собой решение однородной системы (2). Аналогичное утверждение справедливо также для трех и большего числа решений однородной системы (2).

Б) Если

и
;
- два решения линейной системы (1), то система функций

представляет собой решение однородной системы (2). Далее, если

,
, есть решение однородной системы уравнений (2), а
;
, есть решение системы уравнений (1), то система функций

представляет собой решение линейной системы (1).

В) Допустим, что свободные члены системы линейных уравнений (1) представлены в виде сумм:

рассмотрим наряду с системой (1) две системы уравнений:

(3)

(4)

Если

,
, есть решение системы (3), а
,
, есть решение системы (4), то система функций

представляет собой решение системы (1).


ГЛАВА II. Линейные уравнения с постоянными коэффициентами.

§ 5. Линейное однородное уравнении с постоянными коэффициентами (случай простых корней)

В этом и следующем параграфах будет решено линейное одно­родное уравнение с постоянными коэффициентами порядка n, т. е. уравнение

(1)

где z есть неизвестная функция независимого переменного t, а коэффициенты

суть постоянные числа (действительные или комплексные). Сначала будут найдены все комплексные решения этого уравнения, а затем (в случае, когда коэффициенты
действительны) из них будут выделены действительные решения. Уравнение (1) можно записать в виде:

(2)

так что к нему применима теорема существования и единственности. В дальнейшем будет использована лишь единственность, так как решения уравнения (2) будут найдены явно и тем самым существование их будет установлено; единственность же будет использована для доказательства того, что найдены все решения.

В инженерных применениях обыкновенных дифференциальных уравнений с постоянными коэффициентами важную роль играет операционное исчисление. Мы используем здесь символические (или, иначе, операционные) обозначения, лежащие в основе операционного исчисления. Суть этих обозначений заключается в том, что производная по времени t, от произвольной функции

обозначается не через
, а через
, так что буква р, стоящая слева от функции, является символом дифференцирования по t. Если позволить себе применить к символу дифференцирования р некоторые алгебраические действия, то мы приходим к обозначению

Пользуясь этим обозначением, мы можем написать

Если теперь в правой части последнего равенства позволить себе вынести за скобку функцию z, то мы получаем равенство

Таким образом, мы приходим к формальному определению.

А) Пусть

- произвольный многочлен относительно символа р с постоянными коэффициентами (действительными или комплексными) и z — некоторая действительная или комплексная функция действительного переменного t. Положим:

(3)

Если

и
суть два произвольных многочлена относительно символа р (или, как говорят, оператора дифференцирования р), а
— функции переменного t, то, как легко видеть, мы имеем тождества

В силу введенных обозначений уравнение (1) может быть записано в виде:

(4)

где

Б) Пусть

— произвольный многочлен относительно символа р. Тогда

(5)

Докажем формулу (5). Мы имеем

Из этого следует, что

. Отсюда формула (5) вытекает непосредственно (см. (3)).

Из формулы (5) следует, что функция

тогда и только тогда является решением уравнения (4), когда число
есть корень многочлена
. Многочлен
называется характеристическим многочленом уравнения (4). В том случае, когда он не имеет кратных корней, совокупность всех решений уравнения (4) описывается следующей теоремой.

Теорема 4. Предположим, что характеристический многочлен

уравнения

(6)

(см. (1) и (4)) не имеет кратных корней, и обозначим его корни через

Положим:

(7)

Тогда при любых комплексных постоянных

функция

(8)

является решением уравнения (6). Решение это является общим в том смысле, что каждое решение уравнении (6) может быть получено по формуле (8) при надлежащем выборе констант

. При этом константы
(называемые постоянными интегрирования) однозначно определяются для каждого данного решения z.