k- количество наблюдений
n- количество регрессий
Рассчитывается t- статистики Стьюдента
Определяется табличное значение t- статистики при числе степеней свободы k-n-1 и уровня значимости α/2. Сравнивается табличное и расчетное значение и делается вывод.
Далее рассчитаем показатели для оценки качества уравнений:
По всей выборке Y=-152,2248+33,8819*X1-0,0526*X2
k-n-1 | 20 |
Yср | 596,3330 |
σ2 - дисперсия | 312,1648 |
σ - станд. ош. | 17,6682 |
R2 | 0,8330 |
R2 кор. | 0,8163 |
5287,0816 | -195,1602 | -16,6290 | |
СА = | -264,6435 | 17,1410 | -2,0345 |
10,5032 | -3,2577 | 1,0872 |
бА0 = | 72,7123 | tА0 = | -2,0935 |
бА1 = | 4,1402 | tА1 = | 8,1837 |
бА2 = | 1,0427 | tА2 = | -0,0504 |
По 14 наблюдениям Y=295,8791+6,1272*X1+3,1641*X2
k-n-1 | 11 |
Yср | 618,6607 |
σ2 - дисперсия | 51,3048 |
σ - станд. ош. | 7,1627 |
R2 | 0,9136 |
R2 кор. | 0,8979 |
2994,1340 | -160,6574 | 11,8244 | |
СА = | -160,6574 | 10,1736 | -1,2461 |
11,8244 | -1,2461 | 0,2886 |
бА0 = | 54,7187 | tА0 = | 5,4073 |
бА1 = | 3,1896 | tА1 = | 1,9210 |
бА2 = | 0,5372 | tА2 = | 5,8894 |
По 10 наблюдениям
Y=-309,1111+24,5941*X1+6,3460*X2
k-n-1 | 7 |
Yср | 569,8890 |
дисперсия | 192,9140 |
станд. Ош. | 13,8893 |
R2 | 0,9297 |
R2корр | 0,9096 |
10824,0152 | 231,3212 | -281,8637 | |
СА = | 231,3212 | 94,5720 | -40,2710 |
-281,8637 | -40,2710 | 20,4320 |
бА0 = | 104,0385273 | tА0 = | -2,9711 |
бА1 = | 9,724814036 | tА1 = | 2,5290 |
бА2 = | 4,52017947 | tА2 = | 1,4039 |
Проанализируем значения полученных показателей:
Значения R2 и R2 кор. близки к 1, т.е. качество подгонки хорошее.
Проверяя статистическую зависимость коэффициентов, проверяем гипотезу Н0: аj =0 (полученные коэффициенты статистически не значимы, их отличие от нуля случайно). Коэффициент аj значим (Н0 отвергается). Если |tAрасч|>tтабл. то гипотеза Н0 отклоняется при значении аj не случайно отличается от нуля и сформировался под влиянием систематически действующего фактора.
Зададимся уровнем значимости 0,01, тогда при числе степеней свободы k-n-1=20 (11, 7 соответственно), табличное значение t- статистики Стьюдента t0,005; 20=2,845; t0,005; 11=3, 206; t0,005; 7=3,499.
Тогда при уровне значимости 0,01 (с вероятностью 0,99) статистически значимым являются (т.е. не случайно отличаются от 0, сформировались под влиянием систематически действующего фактора); в модели 1: а0, а2; в модели 2: а0, а2; в модели 3: а0, а1. (можно заметить, что для незначимых коэффициентов величина ошибки соответствующего коэффициента велика, превышает половину величины коэффициента).
Априорное утверждение относительно того, что модели 2 и 3 описывают исходные данные лучше, чем модель 1, подтвердилась. Действительно, значение R2 и R2кор. моделей 2 и 3 выше, чем модели 1, а стандартные ошибки оценки ниже. Вывод о справедливости утверждения можно сделать в результате сравнения соответствующих графиков.
Привести пример по одному примеру, иллюстрирующему практическое использование моделей каждого из следующих типов:
ЛММР
РМ с переменной структурой (фиктивные переменные)
Нелинейные РМ
Модели временных рядов
Системы линейных одновременных уравнений
1. ЛММР
Предположим, что по ряду регионов множественная регрессия величины импорта на определенный товар у относительно отечественного производства х1, изменения запасов х2 и потребления на внутреннем рынке х3 оказалась следующей
при этом среднее значение для рассматриваемых признаков составили
на основе данной информации могут быть найдены средние значения по совокупности показатели эластичности
т.е. с ростом величины отечественного производства на 1% размер импорта в среднем по совокупности регионов возрастет на 1,053% при неизменных запасах и потребления семей.
2. РМ с переменной структурой (фиктивные переменные)
Проанализируем зависимость цен двухкомнатной квартиры от ее полезной площади. При этом в модель могут быть введены фиктивные переменные, отражающие тип дома: "хрущевка", панельный кирпичный.
При использовании трех категорий домов вводятся две фиктивные переменные: z1 и z2.
Пусть переменная z1 принимает значение 1 для панельного дома и 0 для всех типов домов; переменная z2 принимает значение 1 для кирпичных домов и 0 для остальных; тогда переменные z1 и z2 принимают значение 0 для домов типа "хрущевки".
"хрущевки"
=320+500*хпанельные
=2520+500*хкирпичные
=1920+500*хВ рассматриваемом примере за базу сравнения цены взяты дома "хрущевки" для которых z1= z2=0
Параметр при z1=2200 означает, что при одной и той же полезной площади квартиры цена ее в панельных домах в среднем на 2200 дол. выше чем в "хрущевках". Соответственно параметр при z2 показывает, что в кирпичных домах цена выше в среднем на 1600дол. при неизменной величине полезной площади по сравнению указанным типам домов.
3. Нелинейные РМ
Если нелинейная модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду. Если же нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции. Например, в эконометрических исследованиях при изучении эластичности спроса от цен широко используется степенная функция:
y=а*хb*
y - спрашиваемое количество,
xb - цена,
- случайная ошибка.4. Модели временных рядов
Имеются следующие данные о величине дохода на одного члена семьи и расходы на товар А.
Показатель | 1985 | 1986 | 1987 | 1988 | 1989 | 1990 |
Расходы на товар А, руб. | 30 | 35 | 39 | 44 | 50 | 53 |
Доход на одного члена семьи, % к 1985г. | 100 | 103 | 105 | 104 | 115 | 118 |
Ежегодные абсолютные приросты определяем по формулам
Расчеты можно представить в виде таблицы
yt | xt | ||
30 | - | 100 | - |
35 | 5 | 103 | 3 |
39 | 4 | 105 | 2 |
44 | 5 | 104 | 4 |
50 | 6 | 115 | 6 |
53 | 3 | 118 | 5 |
Значение у не имеют четко выраженной тенденции они варьируют вокруг среднего уровня, что означает наличие в ряде динамики линейного тренда, аналогичный вывод можно сделать и по ряду х.
Системы линейных одновременных уравнений
Модель вида
y - валовый национальный доход
y-1 - валовый национальный доход предшествующего года,
С - личное потребление,
D - конечный спрос (помимо личного потребления)
Информация за 9 лет о приросте всех показателей дана в таблице.
Год | D | y-1 | У | С |
1 | -6,8 | 46,7 | 3,1 | 7,4 |
2 | 22,4 | 3,1 | 22,8 | 30,4 |
3 | -17,3 | 22,8 | 7,8 | 1,3 |
4 | 12,0 | 7,8 | 21,4 | 8,7 |
5 | 5,9 | 21,4 | 17,8 | 25,8 |
6 | 44,7 | 17,8 | 37,2 | 8,6 |
7 | 23,1 | 37,2 | 35,7 | 30 |
8 | 51,2 | 35,7 | 46,6 | 31,4 |
9 | 32,3 | 46,6 | 56,0 | 39,1 |
ИТОГО | 167,5 | 239,1 | 248,4 | 182,7 |
Для данной модели была получена система приведенных уравнений