Смекни!
smekni.com

Линейная модель множественной регрессии (стр. 2 из 2)

k- количество наблюдений

n- количество регрессий

Рассчитывается t- статистики Стьюдента

Определяется табличное значение t- статистики при числе степеней свободы k-n-1 и уровня значимости α/2. Сравнивается табличное и расчетное значение и делается вывод.

Далее рассчитаем показатели для оценки качества уравнений:

По всей выборке Y=-152,2248+33,8819*X1-0,0526*X2

k-n-1 20
Yср 596,3330
σ2 - дисперсия 312,1648
σ - станд. ош. 17,6682
R2 0,8330
R2 кор. 0,8163
5287,0816 -195,1602 -16,6290
СА = -264,6435 17,1410 -2,0345
10,5032 -3,2577 1,0872
бА0 = 72,7123 tА0 = -2,0935
бА1 = 4,1402 tА1 = 8,1837
бА2 = 1,0427 tА2 = -0,0504

По 14 наблюдениям Y=295,8791+6,1272*X1+3,1641*X2

k-n-1 11
Yср 618,6607
σ2 - дисперсия 51,3048
σ - станд. ош. 7,1627
R2 0,9136
R2 кор. 0,8979
2994,1340 -160,6574 11,8244
СА = -160,6574 10,1736 -1,2461
11,8244 -1,2461 0,2886
бА0 = 54,7187 tА0 = 5,4073
бА1 = 3,1896 tА1 = 1,9210
бА2 = 0,5372 tА2 = 5,8894

По 10 наблюдениям

Y=-309,1111+24,5941*X1+6,3460*X2

k-n-1 7
Yср 569,8890
дисперсия 192,9140
станд. Ош. 13,8893
R2 0,9297
R2корр 0,9096
10824,0152 231,3212 -281,8637
СА = 231,3212 94,5720 -40,2710
-281,8637 -40,2710 20,4320
бА0 = 104,0385273 tА0 = -2,9711
бА1 = 9,724814036 tА1 = 2,5290
бА2 = 4,52017947 tА2 = 1,4039

Проанализируем значения полученных показателей:

Значения R2 и R2 кор. близки к 1, т.е. качество подгонки хорошее.

Проверяя статистическую зависимость коэффициентов, проверяем гипотезу Н0: аj =0 (полученные коэффициенты статистически не значимы, их отличие от нуля случайно). Коэффициент аj значим (Н0 отвергается). Если |tAрасч|>tтабл. то гипотеза Н0 отклоняется при значении аj не случайно отличается от нуля и сформировался под влиянием систематически действующего фактора.

Зададимся уровнем значимости 0,01, тогда при числе степеней свободы k-n-1=20 (11, 7 соответственно), табличное значение t- статистики Стьюдента t0,005; 20=2,845; t0,005; 11=3, 206; t0,005; 7=3,499.

Тогда при уровне значимости 0,01 (с вероятностью 0,99) статистически значимым являются (т.е. не случайно отличаются от 0, сформировались под влиянием систематически действующего фактора); в модели 1: а0, а2; в модели 2: а0, а2; в модели 3: а0, а1. (можно заметить, что для незначимых коэффициентов величина ошибки соответствующего коэффициента велика, превышает половину величины коэффициента).

Априорное утверждение относительно того, что модели 2 и 3 описывают исходные данные лучше, чем модель 1, подтвердилась. Действительно, значение R2 и R2кор. моделей 2 и 3 выше, чем модели 1, а стандартные ошибки оценки ниже. Вывод о справедливости утверждения можно сделать в результате сравнения соответствующих графиков.

Задание 2

Привести пример по одному примеру, иллюстрирующему практическое использование моделей каждого из следующих типов:

ЛММР

РМ с переменной структурой (фиктивные переменные)

Нелинейные РМ

Модели временных рядов

Системы линейных одновременных уравнений

1. ЛММР

Предположим, что по ряду регионов множественная регрессия величины импорта на определенный товар у относительно отечественного производства х1, изменения запасов х2 и потребления на внутреннем рынке х3 оказалась следующей

при этом среднее значение для рассматриваемых признаков составили

на основе данной информации могут быть найдены средние значения по совокупности показатели эластичности

т.е. с ростом величины отечественного производства на 1% размер импорта в среднем по совокупности регионов возрастет на 1,053% при неизменных запасах и потребления семей.

2. РМ с переменной структурой (фиктивные переменные)

Проанализируем зависимость цен двухкомнатной квартиры от ее полезной площади. При этом в модель могут быть введены фиктивные переменные, отражающие тип дома: "хрущевка", панельный кирпичный.

При использовании трех категорий домов вводятся две фиктивные переменные: z1 и z2.

Пусть переменная z1 принимает значение 1 для панельного дома и 0 для всех типов домов; переменная z2 принимает значение 1 для кирпичных домов и 0 для остальных; тогда переменные z1 и z2 принимают значение 0 для домов типа "хрущевки".

"хрущевки"

=320+500*х

панельные

=2520+500*х

кирпичные

=1920+500*х

В рассматриваемом примере за базу сравнения цены взяты дома "хрущевки" для которых z1= z2=0

Параметр при z1=2200 означает, что при одной и той же полезной площади квартиры цена ее в панельных домах в среднем на 2200 дол. выше чем в "хрущевках". Соответственно параметр при z2 показывает, что в кирпичных домах цена выше в среднем на 1600дол. при неизменной величине полезной площади по сравнению указанным типам домов.

3. Нелинейные РМ

Если нелинейная модель внутренне линейна, то она с помощью соответствующих преобразований может быть приведена к линейному виду. Если же нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции. Например, в эконометрических исследованиях при изучении эластичности спроса от цен широко используется степенная функция:

y=а*хb*

y - спрашиваемое количество,

xb - цена,

- случайная ошибка.

4. Модели временных рядов

Имеются следующие данные о величине дохода на одного члена семьи и расходы на товар А.

Показатель 1985 1986 1987 1988 1989 1990
Расходы на товар А, руб. 30 35 39 44 50 53
Доход на одного члена семьи, % к 1985г. 100 103 105 104 115 118

Ежегодные абсолютные приросты определяем по формулам

Расчеты можно представить в виде таблицы

yt
xt
30 - 100 -
35 5 103 3
39 4 105 2
44 5 104 4
50 6 115 6
53 3 118 5

Значение у не имеют четко выраженной тенденции они варьируют вокруг среднего уровня, что означает наличие в ряде динамики линейного тренда, аналогичный вывод можно сделать и по ряду х.

Системы линейных одновременных уравнений

Модель вида

y - валовый национальный доход

y-1 - валовый национальный доход предшествующего года,

С - личное потребление,

D - конечный спрос (помимо личного потребления)

Информация за 9 лет о приросте всех показателей дана в таблице.

Год D y-1 У С
1 -6,8 46,7 3,1 7,4
2 22,4 3,1 22,8 30,4
3 -17,3 22,8 7,8 1,3
4 12,0 7,8 21,4 8,7
5 5,9 21,4 17,8 25,8
6 44,7 17,8 37,2 8,6
7 23,1 37,2 35,7 30
8 51,2 35,7 46,6 31,4
9 32,3 46,6 56,0 39,1
ИТОГО 167,5 239,1 248,4 182,7

Для данной модели была получена система приведенных уравнений