Если значения t>tp, то нулевая гипотеза отклоняется, и можно сделать вывод, что линейная регрессия значима на уровне значимости р. Зададимся уровнем значимости р=0,05. В противном случае гипотеза Н0 принимается
Оценим значимость коэффициента регрессии при уровне значимости р=0,05.
Подставим найденные ранее значения в формулу и определим значение t-критерия.
t0.05=2.306
Поскольку t>t0.05, то на уровне значимости 0,05 отклонением гипотезу Н0, т.е. коэффициент регрессии является статистически значимым.
1.4 Определим выборочный коэффициент Браве-Пирсона. Проверим гипотезу о значимости выборочного коэффициента корреляции при уровне значимости р=0,05.
Коэффициент корреляции Браве-Пирсона (RXY) — это параметри-ческий показатель, для вычисления которого сравнивают средние и стандартные отклонения результатов двух измерений.
где Xi, Yi- значения первой и второй выборок данных;
Xsr, Ysr - средние значения первой и второй выборок.
Проверим гипотезу о значимости выборочного коэффициента корреляции при уровне значимости р=0,05
Поскольку t>t0.05, то на уровне значимости 0,05 отклонением гипотезу Н0, т.е. коэффициент регрессии является статистически значимым.
ЗАДАЧА №2
При уровне значимости р=0,05 методом дисперсионного анализа проверить эффективность воздействия рентгеновского облучения на темп размножения определенного вида бактерий по данным, приведенным по таблице, где представлен относительный уровень (в процентах) размножения облученных бактерий к необлученным.
Номер испытания | Дозы облучения F, 10 P | |||
F1=1 | F2=2 | F3=3 | F4=4 | |
1 | 87 | 83 | 77 | |
2 | 91 | 85 | 76 | |
3 | 97 | 86 | 82 | 77 |
4 | 92 | 88 | 84 | 79 |
5 | 95 | 80 | 81 |
В процессе медико-биологических исследований часто возникает потребность оценить влияние на какой-нибудь результативный признак одного или нескольких факторов.
Одним из современных статических методов, которые дают возможность проводить специальный анализ эффективности влияния многих факторов, является дисперсионный анализ. С помощью этого метода оценивают также вероятность влияния каждого из рассматриваемых факторов, их комбинации и общей совокупности. Важным преимуществом дисперсионного анализа является возможность определения вероятных расхождений в небольших группах экспериментальных данных, когда какой-нибудь другой метод может дать не определенный ответ. Это связано с тем, что в других методах проводится сравнение изолированных групп. Объединение отдельных групп в дисперсионный комплекс дает возможность четче выявить наличие расхождений, потому что при таком объединении выявлению расхождений каждой группы содействуют все другие группы комплекса.
Смысл дисперсионного анализа заключается в сопоставлении между собой показателей варьирования результативных признаков, которое служит причиной действия постоянных и случайных факторов. В зависимости от числа факторов, которые учитываются при дисперсионном анализе, статистические комплексы делятся на:
· однофакторный дисперсионный анализ с одинаковым числом испытаний на уровнях;
· однофакторный дисперсионный анализ с неодинаковым числом испытаний на уровнях;
· двухфакторный дисперсионный анализ
Ниже будет рассмотрен пример однофакторного дисперсионного анализа с неодинаковым числом испытаний на уровнях.
Неодинаковое число испытаний на уровнях.
Если число испытаний проведенных на различных уровнях действия фактора, различно, а именно: на уровне А1 проведено q1 испытаний, на уровне А2- q2 испытаний и т. д. на уровне Аi – qi испытаний, то факторную и остаточную дисперсии находят по следующим формулам:
Здесь
- общее количество результатов испытаний
- сумма значений величины Х на уровне Аj;
- сумма квадратов значений величины Х на уровне Аj
Определим величины:
Предполагая, что распределения значений, характеризующих эффективность рентгеновского облучения, при каждом испытании является нормальными, а соответствующие генеральные дисперсии равны, применим метод однофакторного дисперсионного анализа.
1) Найдем общее количество результатов испытаний:
2) Определим сумму значений величины х на уровне Аj:
3) Определим сумму квадратов значений величины х на уровне Аj
4) Теперь можно определить факторную и остаточную дисперсии по следующим формулам:
Поскольку
следует проверить значимость различий между этими дисперсиями. Для этого вычисляем экспериментальное значение критерияТак как
это различие между факторной и остаточной дисперсиями является значимым (при уровне значимости р=0,05). В соответствии с методом дисперсионного анализа нулевую гипотезу о равенстве групповых средних следует отвергнуть, т. е. различия между групповыми средними значимы, что соответствует наличию существенного различий между эффективностью воздействия рентгеновского облучения на темп размножения бактерий.