Смекни!
smekni.com

Решение задач в системе MathCad (стр. 3 из 4)

Вывод: Можно утверждать, что рассматриваемый физический фактор оказывает существенное влияние на размножение бактерий.


ЗАДАЧА №3

Для заданной таблицы данных:

X 1 2 3 4 5 6 7 8 9 10
Y 7.628 6.153 5.519 5.602 5.47 5.012 5.075 4.964 4.902 5.128

С помощью функции genfit – системы MathCadпровести нелинейную ре-гресссию общего вида для

f(x)=ax+b/x;

f1(x)=ax+bx+c;

f3(x)=a

+ab

Под нелинейной регрессией общего вида подразумевается нахождение вектора Р параметров произвольной функции F (x, u1, u2, ..., un), при котором обеспечивается минимальная среднеквадратичная погрешность приближения “облака” исходных точек. Для проведения нелинейной регрессии общего вида используется функция genfit (X, Y, S, F1). Она возвращает вектор Р параметров функции F, дающий минимальную среднеквадратичную погрешность приближения функцией F(x, u1, u2, ..., un) исходных данных. F должен быть вектором с символьными элементами, причем они должны содержать аналитические выражения для исходной функции и ее производных по всем параметрам. Вектор S должен содержать начальные значения элементов вектора P, необходимые для решения системы нелинейных уравнений регрессии итерационным методом.

При решении этой задачи возникают две проблемы. Прежде всего, надо вычислить значения производных по переменным а и b. Это может быть cделано с помощью символьных операций, что наглядно показывает пользу от таких операций. Вторая проблема связана с необходимостью применения функции genfit в ее стандартном виде. Поэтому пришлось заменить параметр а на u1, а параметр b на u2 и т. д..

Пример использования метода в среде MathCad:

І СПОСОБ (Для функции -f1(x)=ax+bx+c )

1) Вводим результаты измерений величин X и Y:

2) Выбрав функцию приближения

где a, b - искомые коэффициенты регрессии,

3) найдем частные производные этой функции по коэффициентам регрессии:

по а:

по b:

по с:

1

4) Введем вектор, элементами которого являются функция приближения и её производные, переобозначив коэффициенты регрессии

u1=a,

u2=b,

u3=c:

вектор F1 должен быть вектором с символьными элементами, причем они должны содержать аналитические выражения для исходной функции и ее производных по всем параметрам.

4) Вводим вектор с начальными приближениями коэффициентов регрессии (вектор S должен содержать начальные значения элементов вектора u):

5) С помощью функции genfit(Х,Y,S,F1), найдем значения коэффициентов регрессии a, b,

гдеX и Y - векторы экспериментальных данных,

S - вектор с начальными приближениями коэффициентов регрессии,

F1 - вектор F1(x,u)

6) Подставляя найденные значения коэффициентов регрессии в первый элемент вектора F1(x,u), определите искомую функцию приближения экспериментальных данных (уравнение регрессии):

7) Построим линию регрессии и график экспериментальных данных:

ІІ СПОСОБ (Для этой же функции -f2(x)=ax+bx+c )

1) Найдем параметров a, bпо следующей системе нормальных уравнений:

2) Чтобы решить эту систему относительно параметров a, bи с, нужно предварительно рассчитать суммы:

3) Составим систему нормальных уравнений:

4) Решая эту систему относительно коэффициентов a, bи с, найдем их значение:

5) Отсюда эмпирическое уравнение параболы второго порядка таково:

6) Подставляя в это уравнение вместо х значения независимой переменной Х, можно рассчитать ожидаемые величины:

7) Эти величины хорошо согласуются с фактическими данными, это можно увидеть на (более плавно идущей) линии регрессии:

8) Найдем среднеквадратическое уравнение. СКО характеризует разброс любого результата из ряда наблюдений относительно среднего результата анализа:

Для функции f2(x)=ax+b/x;