МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
------------------------------------------------------------------------------
Кафедра прикладной математики
Курсовая работа на тему:
«Применение комплексных чисел в элементарной геометрии»
Выполнила: студентка 2 курса
физико-математического
факультета специальности
«Прикладная математика и
информатика»
----------------------------------
Научный руководитель: старший
преподаватель
-----------------------------------------
---------------------------------, 2010
Оглавление
Введение 3
§ 1. Параллельный перенос 4
§ 2. Вращение 4
§ 3. Подобие и движение 5
§ 4. Принадлежность трех точек прямой 7
§ 5. Принадлежность четырех точек окружности 8
§ 6. Ортоцентр треугольника 9
§ 7. Окружность и прямая Эйлера 10
§ 8. Прямая Симсона треугольника 12
Заключение 18
Библиографический список 19
Введение
Большое значение комплексных чисел в математике и ее приложениях широко известно. Особенно часто применяются функции комплексного переменного. Вместе с тем алгебру комплексных чисел можно успешно использовать в элементарной геометрии, тригонометрии, теории геометрических преобразований, а также в электротехнике и различных задачах с механическим и физическим содержанием.
Метод комплексных чисел позволяет решать планиметрические задачи по готовым формулам прямым вычислением, элементарными выкладками. Выбор этих формул с очевидностью диктуется условиями задачи и ее требованием. В этом состоит простота данного метода, по сравнению с другими методами, ведь готовое решение может быть очень коротким.
В данной работе рассматривается применение комплексных чисел в планиметрии: описание преобразований плоскости, вывод некоторых формул для решения задач и доказательство некоторых свойств.
Цель работы:
1. Описать параллельный перенос, вращение, движение первого и второго рода, подобие первого и второго рода с помощью операций над комплексными числами. Вывести условие принадлежности трех точек одной прямой и четырех точек одной окружности.
2. Доказать с помощью комплексных чисел свойства ортоцентра треугольника, существование окружности и прямой Эйлера.
3. Используя комплексные числа, доказать свойства прямой Симсона треугольника.
Работа состоит из введения, основной части, заключения и библиографического списка. Во введении кратко описывается значение выбранной темы, цель работы и структура работы. В основной части рассмотрены преобразования плоскости с помощью комплексных чисел, условия принадлежности точек прямой и окружности, свойства ортоцентра треугольника и прямой Симсона треугольника, а также доказательство существования окружности и прямой Эйлера и примеры решения задач с помощью комплексных чисел. В заключении представлены выводы о применении комплексных чисел в планиметрии.
Параллельный перенос
Любое комплексное число можно единственным образом отобразить на плоскости как точку
Зафиксируем два комплексных числа
Вращение
Пусть даны точки
где
Таким образом умножение комплексных чисел определяет центрально-подобное вращение плоскости, составляющееся из вращения вокруг т. O на угол
Любое движение плоскости можно представить или как вращение вокруг фиксированной точки O, сопровождаемое параллельным переносом, или как симметрию относительно фиксированной прямой o, сопровождаемую вращением вокруг выбранной точки O и параллельным переносом. Таким образом каждое движение плоскости можно представить в виде:
или
Подобие и движение
Преобразованием подобия (или подобием) называется преобразование, при котором каждые две точки