Смекни!
smekni.com

Исследование кривых и поверхностей второго порядка (стр. 1 из 3)

Кафедра высшей математики

Курсовая работа

по линейной алгебре и аналитической геометрии

на тему:

Исследование кривых и поверхностей второго порядка

Дубна, 2002

Оглавление

ВВЕДЕНИЕ

ИССЛЕДОВАНИЕ КРИВОЙ ВТОРОГО ПОРЯДКА

Теоретическая часть

Практическая часть

ВЫВОД

ИССЛЕДОВАНИЕ ФОРМЫ ПОВЕРХНОСТИ ВТОРОГО ПОРЯДКА

Теоретическая часть

Практическая часть

ВЫВОД

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ


Введение

Цель

1. Целью данной курсовой работы является исследование кривой и формы поверхности второго порядка. Закрепление полученных теоретических знаний и практических навыков по изучению и анализу свойств кривых и поверхностей второго порядка.

2. Ознакомление с пакетами программ Microsoft® Word и Microsoft® Excel.

Постановка задачи

I. Для данного уравнения кривой второго порядка:

1. Определить тип данной кривой с помощью инвариантов.

2. Привести уравнение кривой к каноническому виду, применяя преобразования параллельного переноса и поворота координатных осей.

3. Найти фокусы, директрисы и ассимптоты данной кривой (если они есть).

4. Построить каноническую систему координат и данную кривую в общей системе координат.

II. Для данного канонического уравнения поверхности второго порядка:

1. Исследовать форму поверхности методом сечений плоскостями, построить линии, полученные в сечениях;

2. Построить поверхность в канонической системе координат.

Исследование кривой второго порядка

Теоретическая часть

Пусть кривая Г задана в декартовой прямоугольной системе координат xOyуравнением:

. (1.1)

Если хотя бы один из коэффициентов

отличен от нуля, то кривую Г называют кривой второго порядка.

Теорема 1. Для произвольной кривой второго порядка Г существует такая декартова прямоугольная система координат XO¢Y, что в этой системе кривая Г имеет уравнение одного из следующих канонических видов:

1)

, а ³b> 0 — эллипс,

2)

— мнимый эллипс,

3)

— две мнимые пересекающиеся прямые

(точка),

4)

— гипербола,

5)

— две пересекающиеся прямые,

6)

— парабола,

7)

— две параллельные прямые,

8)

— две мнимые параллельные прямые,

9)

— две совпадающие прямые.

В этих уравнениях a,b,p положительные параметры.

Систему координат XO¢Y назовем канонической системой координат, а систему координат xOy — общей системой координат.

Классификация кривых второго порядка

В зависимости от значения инварианта

принята следующая классификация кривых второго порядка:

· если

кривая второго порядка Г называется кривой эллиптического типа.

· если

кривая второго порядка Г называется кривой параболического типа.

· если

кривая второго порядка Г называется кривой гиперболического типа.

Кривая второго порядка Г называется центральной, если

. Кривые эллиптического и гиперболического типа являются центральными кривыми.

Центром кривой второго порядка Г называется такая точка плоскости, по отношению к которой точки этой кривой расположены симметрично парами. Точка

является центром кривой второго порядка, определяемой уравнением (1.1), в том и только в том случае, когда ее координаты удовлетворяют уравнениям:

(2.1)

(2.1)

Определитель этой системы равен

. Если
, то система имеет единственное решение. В этом случае координаты центра могут быть определены по формулам:

,
. (2.2)

Из теорем 1 и 2 получается следующая классификация кривых второго порядка с помощью инвариантов:

1) эллипс

2) мнимый эллипс

3) две мнимые пересекающиеся прямые (точка)

4) гипербола

5) две пересекающиеся прямые

(2.3)

6) парабола

7) две параллельные прямые

8) две мнимые параллельные прямые

9) две совпадающие прямые

Практическая часть

Дано:

Определить тип кривой с помощью инвариантов в зависимости от β:

Вычислим инварианты:

1. Если

, то имеем линии эллиптического типа

Этих β будет эллипс

При

При

2. Если

то пишем линии параболического типа, при этом, чтобы была парабола

3. Если

, то получаем линии гиперболического типа.

При

гипербола

При

корней нет, т.е. таких двух пересекающихся прямых, не существует.
Значение
Тип кривой Мнимая точка Точка Эллипс Парабола Гипербола

Исследуем кривую при β=0 , тогда получим:

Сперва повернём на угол φ:


Найдём угол φ,такой чтобы коэффициент при

был равен 0: