Смекни!
smekni.com

Логарифмические уравнения (стр. 4 из 5)

6

5

4

3

2


4

3 25

2

4 2

3

8

2

81

49

3 2

3 3

8

64

81

2

± 2

4

3

16

35

15

1

7

0

–40

–4

5

4

3

–3

–2

–3

2

–3

3

–5

32

–9

64

–125

log 53

log 46

log 87

log 92

log 38

log 74

log 59

log 25

7

6

5

4

3

2

1

a b c d e f g h

5. Решить уравнения:

log4 | x | 0

=

1−x

(x2−4)log2 x=0

x2 x

= 0

log2 x

(5x x2)log5x2=0

x2 −9

= 0

1−log3 x

log3 x2 0

=

x+1

x2 + 4x

= 0

log (2 x+5)

1− | x |

= 0 log−x 2

log 9 9x =x3

log 34 x = x

log 58 x =x2

log 32 x =−

1x
1 log3⎛⎜1⎞⎟x =−x ⎝ 2⎠

1 x

log0,5⎛⎜ ⎞⎟ = 1

⎝3⎠ x

log 43

=−

log 4

x =−x2

log 8| |x = 3

log 91 =−2

| |x

log 81x2 =−2

log 112 = 2

x

log 3| |x =−2

log3x2 18= 2

log 1 25= 4

log 49x2 =

log 2x x2−3 = 0

1

log 25 x = 0

log x 3x2−2x = 0

log 5x x2− +4 3x =0

log 4x 1−x2 = 0

log 5x | | 2x+ = 0

logx2+13x x3− =0

log|x+1| 2x2+2x=0

4x2 =

1 10−| |x =

9

3−2x =4

1

7| |x =3

2

6 x = 2

1

5−x2 =

3

8−| |x =5

2 −

3 x =10

log2−x x= 0

log1x(x− =2) 0

log (x x−1) = 0

log (2x x) = 0

log1 2− x(2 )x = 0

x

log3−x

= 0

2

log2+x(−x) = 0

log (2x x+ =2) 0

1 log3

= 0

x

log (4 x2 + =2) 0

log9 x2 =1

2 log4

= 0

x

log 53 x = 0

log (5 x2 + =1) 1

log 62 x =1

log2 x2 = 0

log (3 x+1) = 2

log (14 − =x) 2

log (3 x−1) =−2

log (2 x−1) =−3

log (22 x) = 2

log (3 x−2) =3

log (3 x+2) =−3

log (4 x− =−2) 2

7