6
5
4
3
2
| | 2 | | | | | 8 |
| 81 | 49 | | | 8 | 64 | 81 |
2 | ± 2 | 4 | 3 | 16 | | 35 | |
15 | 1 | | 7 | 0 | –40 | –4 | − |
5 | | 4 | 3 | − | –3 | –2 | –3 |
2 | –3 | 3 | –5 | − | − | ||
32 | –9 | 64 | − | | –125 | | − |
log 53 | log 46 | log 87 | log 92 | log 38 | log 74 | log 59 | log 25 |
7
6
5
4
3
2
1
a b c d e f g h
5. Решить уравнения:
= 1−x | (x2−4)log2 x=0 | x2 −x log2 x | (5x x− 2)log5x2=0 | x2 −9 1−log3 x | log3 x2 0 = | x2 + 4x log (2 x+5) | 1− | x | |
| | log 58 x =x2 | log 32 x =− | | 1 x ⎝3⎠ x | log 43 | log 4 |
log 8| |x = 3 | log 91 =−2 | |x | log 81x2 =−2 | log 112 = 2 − x | log 3| |x =−2 | log3x2 18= 2 | log 1 25= 4 | log 49x2 = |
log 2x x2−3 = 0 | 1 log 25 x = 0 | | log 5x x2− +4 3x =0 | log 4x 1−x2 = 0 | log 5x | | 2x+ = 0 | logx2+13x x3− =0 | log|x+1| 2x2+2x=0 |
4x2 = | 1 10−| |x = 9 | 3−2x =4 | 1 7| |x =3 | 2 6 x = 2 | 1 5−x2 = 3 | 8−| |x =5 | 2 − 3 x =10 |
log2−x x= 0 | log1−x(x− =2) 0 | log (x x−1) = 0 | log (2−x −x) = 0 | log1 2− x(2 )x = 0 | x log3−x 2 | log2+x(−x) = 0 | log (2−x x+ =2) 0 |
1 log3 x | log (4 x2 + =2) 0 | log9 x2 =1 | 2 log4 x | log 53 x = 0 | log (5 x2 + =1) 1 | log 62 x =1 | log2 x2 = 0 |
log (3 x+1) = 2 | log (14 − =x) 2 | log (3 x−1) =−2 | log (2 −x−1) =−3 | log (22 −x) = 2 | log (3 −x−2) =3 | log (3 x+2) =−3 | log (4 x− =−2) 2 |
7