Отсюда
, то есть .13.
.Так как
, то .2. Производная сложной функции
Пусть дана функция
и при этом . Тогда исходную функцию можно представить в виде . Функции такого типа называются сложными. Например, .В выражении
аргумент называется промежуточным аргументом. Установим правило дифференцирования сложных функций, так как они охватывают практически все виды существующих функций.Теорема. Пусть функция
имеет производную в точке , а функция имеет производную в соответствующей точке . Тогда сложная функция в точке также будет иметь производную равную производной функции по промежуточному аргументу умноженной на производную промежуточного аргумента по , то есть .Для доказательства дадим приращение аргументу
, то есть от перейдем к . Это вызовет приращение промежуточного аргумента , который от перейдет к . Но это, в свою очередь, приведет к изменению , который от перейдет к . Так как согласно условию теоремы функции и имеют производные, то в соответствии с теоремой о связи дифференцируемости и непрерывности функции (теорема 11.2.2) они непрерывны. Значит, если , то и , что, в свою очередь, вызовет стремление к нулю.Составим
. Отсюда,и, следовательно,
.Если функция
имеет не один, а два промежуточных аргумента, то есть ее можно представить в виде , где , а , или , то, соответственно, и так далее.3. Дифференцирование параметрически заданной функции
Выше были рассмотрены производные элементарных функций и указано правило дифференцирования сложных функций, составленных из элементарных. Но существуют и другие способы задания функций, которые также необходимо дифференцировать. Одним из таких способов является параметрическое задание функции, с которым мы уже сталкивались при изучении уравнения прямой линии.
При обычном задании функции уравнение
связывало между собой две переменных: аргумент и функцию. Задавая , получаем значение , то есть пару чисел, являющихся координатами точки . При изменении меняется , точка начинает перемещаться и описывать некоторую линию. Однако при задании линии часто бывает удобно переменные и связывать не между собой, а выражать их через третью переменную величину.Пусть даны две функции:
где . Для каждого значения из данного промежутка будет своя пара чисел и , которой будет соответствовать точка . Пробегая все значения, заставляет меняться и , то есть точка движется и описывает некоторую кривую. Указанные уравнения называются параметрическим заданием функции, а переменная – параметром.Если функция
взаимно однозначная и имеет обратную себе, то можно найти . Подставляя в , получим , то есть обычную функцию. Указанная операция называется исключением параметра. Однако при параметрическом задании функции эту операцию не всегда делать удобно, а иногда и просто невозможно.Так, в механике принят способ изображения траектории точки в виде изменения ее проекций по осям
и в зависимости от времени , то есть в виде параметрически заданной функции Такой способ значительно удобнее при решении целого ряда задач. В трехмерном случае сюда добавляется еще и уравнение .В качестве примера рассмотрим несколько параметрически заданных кривых.
1. Окружность.
Возьмем точку
на окружности с радиусом . Выражая и через гипотенузу прямоугольного треугольника, получаем:Это и есть уравнение окружности в параметрической форме (рис. 3.1). Возводя каждое уравнение в квадрат, отсюда легко получить обычное уравнение окружности
.