Смекни!
smekni.com

Игровые элементы при обучении математике как средство привития интереса к предмету (стр. 8 из 11)

Подводя итоги всего выше сказанного, считаю, что игровые элементы на уроках математики, как эффективное средство развития познавательного интереса, должны использоваться на уроках как можно чаще.

ЛИТЕРАТУРА

1. Аристова, Л Активность учения школьника [Текст] / Л. Аристова. – М: Просвещение, 1968.

2. Виноградова, М.Д. Коллективная познавательная деятельность и воспитание школьников [Текст] / М.Д. Виноградова, И.Б. Первин. – М: Просвещение, 1977.

3. Водзинский, Д.И. Воспитание интереса к знаниям у подростков [Текст] / Д.И. Водзинский. – М: Учпедгиз, 1963. – 183с.

4. Ганичев, Ю. Интеллектуальные игры: вопросы их классификации и разработки [Текст] // Воспитание школьника, 2002. - №2.

5. Горностаев, П.В. Играть или учится на уроке [Текст] // Математика в школе, 1999. – №1.

6. Доморяд, А.П. Математические игры и развлечения [Текст] / А.П. Доморяд. – М: Гос. издание Физико-математической литературы, 1961. – 267с.

7. Дышинский, Е.А. Игротека математического кружка [Текст] / Е.А. Дышинский. – 1972.-142с.

8. Игра в педагогическом процессе [Текст] - Новосибирс, 1989.

9. Игры – обучение, тренинг, досуг [Текст] / под ред. В.В. Перусинского. – М: Новая школа, 1994. - 368с.

10. Калинин, Д. Математический кружок. Новые игровые технологии [Текст] // Математика. Приложение к газете «Первое сентября», 2001. - №28.

11. Коваленко, В.Г. Дидактические игры на уроках математики [Текст]: книга для учителя / В.Г. Коваленко. – М: Просвещение, 1990. – 96с.

12. Макаренко, А.С. О воспитании в семье [Текст] / А.С.Макаренко. – М: Учпедгиз, 1955.

13. Метнльский, Н.В. Дидактика математики: общая методика и ее проблемы [Текст] / Н.В. Метельский. – Минск: Издательсто БГУ, 1982. – 308с.

14. Минский, Е.М. От игры к знаниям [Текст] / Е.М. Минский. – М: Просвещение, 1979.

15. Морозова, Н.Г. Учителю о познавательном интересе [Текст] / Н.Г. Морозова. – М: Просвещение, 1979. – 95с.

16. Пахутина, Г.М. Игра как форма организации обучения [текст] / Г.М. Пахутина. – Арзамас,2002.

17. Петрова, Е.С. Теория и методика обучения математике [Текст]: Учебно-методическое пособие для студентов математических специальностей / Е.С. Петрова. – Саратов: Издательство саратовского университета, 2004. – 84с.

18. Самойлик, Г. Развивающие игры [Текст] // Математика. Приложение к газете «Первое сентября», 2002. - №24.

19. Сиденко, А. Игровой подход в обучении [Текст] // Народное образование, 2000. - №8.

20. Талызина, Н.Ф. Формирование познавательной деятельности учащихся [Текст] / Н.Ф. Талызина. – М: Знания, 1983. – 96с.

21. Технология игровой деятельности [Текст]: учебное пособие / Л.А. Байкова, Л.К. Теренкина, О.В. Еремкина. – Рязань: Издательство РГПУ, 1994. – 120с.

22. Факультативные занятия по математике в школе [Текст] / сост. М.Г. Лускина, В.И.Зубарева. - К: ВГГУ, 1995. – 38с

23. Формирование интереса к учению у школьников [Текст] / под ред. А.К. Маркова. - М: Просвещение, 1986. – 192с.

24. Шаталов, Г. Способы повышения мотивации обучения [Текст] // Математика. Приложение к газете «Первое сентября», 2003. - №23.

25. Шатилова, А. Занимательная математика. КВНы, викторины [Текст] / А. Шатилова, Л. Шмидтова. – М: Айрис-пресс, 2004.- 128с.

26. Шуба, М.Ю. Занимательные задания в обучении математике [Текст] / М.Ю. Шуба. – М: Просвещение, 1995.

27. Щукина, Г.И. Активизация познавательной деятельности учащихся в учебной деятельности [Текст] / Г.И. Щукина. - М: Просвещение, 1979. – 190с.

28. Щукина, Г.И. Педагогические проблемы формирования познавательного интереса учащихся [Текст] / Г.И. Щукина. - М: Просвещение, 1995. – 160с.

29. Эльконин Д.Б. психология игры [текст] / Д.Б. Эльконин. М: Педагогика, 1978.

30. Гринченко, И. С. Игра в теории, обучении, воспитании и коррекционной работе. – М.: ЦГЛ, 2002

31. Манвелов, С. Г. Конструирование современного урока математики. – М.:Просвещение, 2002.

32. Барышникова Н. В. Математика 5 – 11 класс. Нестандартные уроки. – Волгоград: Учитель, 2007. – 154с.

33. Симонов В. М. Калейдоскоп учебно-деловых игр в старших классах на уроках математики, физики, информатики, химии, биологии, географии, экономики. – Волгоград: Учитель, 2005. – 114 с.

34. «Математика в школах Украины» журнал. №27(255), 2002.

35. «Математика в школах Украины» журнал. №3(231), 2002.

ПРИЛОЖЕНИЕ

ДЕЛОВАЯ ИГРА «И ЭТО ВСЕ О ПРОИЗВОДНОЙ»

10 класс Тема «Наибольшее и наименьшее значение функции»

Цель: повторить и закрепить знания по теме урока.

Класс разбит на 5 групп по 5 – 6 человек – отделы, возглав­ляемые «главными инженерами». Все «сотрудники» отдела (члены команд) подчиняются непосредственно «главному ин­женеру» своего отдела, а также «руководителю конструктор­ского бюро» -учителю математики.

Ход урока-игры

I. Ярмарка.

Группам предлагаются вопросы для обсуждения.

1) На промежутке (0; 2) у'(х) > 0, на промежутке [2; 3] у'(х) < 0. Является ли точка х = 2 точкой минимума?

2) Функция у(х) непрерывна в точке х = 3, причем у'(х) < 0 на (2; 3) и у'(х) > 0 на промежутке [3; 4]. Является ли точка х = 3 точкой максимума?

3) Является ли точка х = 2 критической для функции у(х), ес­ ли D (у) = [-3; 2]?

4) Для функции у =

производная равна
.. В точке х = 0 производная не существует, значит х = 0 – критическая точка. Верно ли?

5) На отрезке [а; b] функция имеет максимумы, равные 2 и 5,
причем у(а) = – 3 и у(b) = 6. Верно ли, что наибольшее значение
функции равно 5, а наименьшее значение равно – 3?

II. Лото.

Эта игра проводится в каждой группе.

III. Дело.

Этот этап – основная часть деловой игры, где каждый отдел занят решением практической задачи. Происходит процесс при­менения знаний на практике. Ведется беседа об оптимальных вариантах решения задач.

Знакомство с различными профессиями. Например, можно рассказать об использовании отводного желоба в очистных со­ оружениях. Он строится из железобетона и внутри облицован плиткой. При проектировании строительства этого сооружения необходимо учитывать принцип экономичности: выбрать мини­ мальные размеры при максимальной пропускной способности.

Задачи для отделов:

Облицовка

Заготовленной плиткой нужно облицевать 6000 кв. м боко­ вых стенок и дно желоба прямоугольного поперечного сечения длиной 1000 м. Каковы должны быть размеры сечения, чтобы пропускная способность желоба была наибольшей?

Максимальный слив

Необходимо построить открытый желоб прямоугольного се­ чения для стока воды. Длина периметра поперечного сечения желоба должна равняться 6 м. Какой высоты должны быть стен­ ки желоба, чтобы получился максимальный слив?

Два поезда

Два железнодорожных пути пересекаются под прямым уг­ лом. К месту пересечения одновременно мчатся по этим путям два поезда: один со станции, находящейся в 40 км от пересече ния, другой со станции, находящейся в 50 км от того же места пересечения. Первый делает в минуту 800 м, второй 600 м. Через сколько минут, считая с момента отправления, поезда будут в наименьшем взаимном расстоянии? Как велико это расстоя­ ние?

Автомобиль

Для стоянки машин выделили площадку прямоугольной формы, примыкающую одной стороной к стене здания. Площад­ ку обнесли с трех сторон металлической сеткой длиной 200 м, и площадь ее при этом оказалась наибольшей. Каковы размеры пло­ щадки?

Занимательная задача, связанная с рассказом Л. Н. Толстого «Много ли человеку земли надо»

Задача.Из всех четырехугольников с периметром 40 м указать четырехугольник наибольшей площади. Учащимся предлагается начертить известные четырехугольники: ромб, прямоугольник, квадрат, трапецию с периметром 40 м наиболь­ шей площади. Можно предложить составить таблицу для вы­ числения площадей прямоугольников с различными длинами сторон.

Вывод: из всех прямоугольников данного периметра наи­ большую площадь имеет квадрат.

IV. Наши ошибки.

В конце игры предлагаются для обсуждения вопросы, кото­рые содержат часто встречающиеся ошибки.

1. Определяя точки минимума функции, учащийся нашел, при каких значениях аргумента значения функции равны 0. За­ тем из этих значений он выбрал те, проходя через которые функция меняет знак с «-» на «+». Эти точки он назвал точками минимума. Прав ли он?

2. Определяя точки минимума функции, учащийся нашел те значения аргумента, при которых производная обращается в 0. Эти точки он назвал точками минимума. Прав ли он?

3. График производной. Определяя точки минимума, ученик указал точку х = 2. Прав ли он?

4. График производной. Определяя точки минимума, ученик указал точки х = - 4, х = 1, х = 3. Прав ли он?