Смекни!
smekni.com

Основы теории вероятности (стр. 2 из 2)

По формуле Бейсса:

=> так как i = 3

Задача 9

Вероятность выигрыша в лотерею на один билет равна p. Куплено n билетов. Найти наивероятнейшее число выигравших билетов и соответствующую вероятность.

p = 0.3 - вероятность на 1 билет

n = 15 - кол-во купленных билетов

Формула Бернули :

m = 1,2,3,4,…..,n

Производная функция :


q = 1 – p

Наивероятнейшее число выигравших билетов

=>

Наивероятнейшее число выигравших билетов : m0 = 4

- соответствующая вероятность

Задача № 10

Вероятность “сбоя” в работе телефонной станции при каждом вызове равна p. Поступило n вызовов. Определить вероятность m сбоев.

р = 0.007 - вероятность “сбоя” при вызове

n = 1000 - кол-во вызовов

m = 7 - кол-во “сбоев”

По закону Пуассона:


=>

Задача № 11

По данному закону распределения случайной величины найти характеристическую функцию φ(t), математическое ожидание Мξ, дисперсию Dξ случайной величины ξ.

Биномиальный закон:

n = 3

p = 0.67

=>

=>


Литература

1. Е.С. Венцель “Теория вероятности”

2. В.Ф. Чудесенко “Сборник заданий по спецкурсу высшей математики ТР”

3. Курс лекций по Теории вероятности