— представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие планеты. Противоположность геоцентрической системе мира. Возникло в античности, но получило широкое распространение с конца Эпохи Возрождения.
В этой системе Земля предполагается обращающейся вокруг Солнца за один звёздный год и вокруг своей оси за одни звёздные сутки. Следствием второго движения является видимое вращение небесной сферы, первого — перемещение Солнца среди звёзд по эклиптике.
SCENOGRAPHIA SYSTEMATIS COPERNICANI - Scenography of the Copernican world system
Планетные конфигурации:
Внешние и внутренние планеты
Планеты солнечной системы делятся на два вида: внутренние (Меркурий и Венера), наблюдаемые только на сравнительно небольших расстояниях от Солнца, и внешние (все остальные), которые могут наблюдаться на любых расстояниях. В гелиоцентрической системе это различие связано с тем, что орбиты Меркурия и Венеры всегда находятся внутри орбиты Земли (третьей от Солнца планеты), в то время как орбиты остальных планет находятся вне орбиты Земли.
Попятные движения
Попятные движения планет (особенно наглядно наблюдаемые у внешних планет), которые были главной загадкой астрономии с древнейших времён, в гелиоцентрической системе объясняются тем, что угловые скорости планет уменьшаются с увеличением расстояния от Солнца. В результате, когда планета наблюдается в той же части неба, что и Солнце, она совершает видимое движение относительно звёзд в том же (прямом) направлении, что и Солнце: с запада на восток. Однако когда Земля проходит между Солнцем и планетой, она как бы опережает планету, в результате чего последняя движется на фоне звёзд в обратном направлении, с востока на запад. Отсюда следует, что планеты совершают попятные движения вблизи противостояний, когда планеты находятся наиболее близко к Земле и, как следствие, являясь наиболее яркими при наблюдении с Земли.
Попятные движения планет
Соотношение между синодическими и сидерическими периодами обращений планет; вавилонские периоды
В гелиоцентрической системе устанавливается следующее соотношение между синодическими S и сидерическими T периодами обращений внешних планет:
,где Y — продолжительность земного (звёздного) года. Отсюда следуют соотношения, эмпирически полученные астрономами Древнего Вавилона (так называемые целевые годовые периоды): если внешняя планета делает n полных оборотов по эклиптике (относительно звёзд) за m лет, то за это время проходит k = m - n синодических периодов данной планеты (k, m, n — целые числа).
Например, для Марса k = 37, m = 79, n = 42, для Юпитера k = 76, m = 83, n = 7, для Сатурна k = 57, m = 59, n = 2.
С точки зрения геоцентрической системы, эти соотношения являются загадкой. Но они автоматически следуют из вышеприведённой формулы, полученной в рамках гелиоцентризма, поскольку по определению mY = kS (m — это такое целое количество земных лет, за которые планета делает n целых оборотов по эклиптике) и величины k, m и n обратно пропорциональны, соответственно, величинам S, Y и T.
Расстояния до планет
Определение расстояний до внутренних планет |
В гелиоцентрической системе с помощью простых геометрических рассуждений и немногих наблюдательных данных легко определяются средние расстояния от Солнца до планет (в предположении круговых концентрических орбит), что невозможно в рамках геоцентризма. Для внутренней планеты достаточно знать её максимальное угловое расстояние от Солнца ? (наибольшую элонгацию). Рассмотрев треугольник SPT (угол SPT — прямой), нетрудно видеть, что
(см. рис. справа), где a — астрономическая единица (среднее расстояние от Земли до Солнца). Для внешних планет необходимо из наблюдений определить синодический период планеты S и промежуток времени t между противостоянием планеты и моментом квадратуры (когда планета видна с Земли под прямым углом к Солнцу). Далее нужно найти с помощью формулы S -1 = Y -1 + T -1, период T обращения планеты вокруг Солнца. Зная эту величину, можно найти углы α и β, пройденные планетой и Землёй по своим орбитам за время t:
Определение расстояний до внешних планет |
Далее, находится угол γ, под которым видны Земля и Солнце при наблюдении с планеты:
(угол STP прямой, см. рисунок справа). Искомое расстояние оказывается равным
Именно с помощью таких соображений Коперник впервые вычислил относительные расстояния планет от Солнца.
Фазы Меркурия и Венеры
Поскольку все планеты светят отражённым светом Солнца, у них должна наблюдаться смена фаз. У Меркурия и Венеры, обращающихся вокруг Солнца внутри орбиты Земли, порядок смены фаз должен быть следующим:
- планета в верхнем соединении видна в виде почти полного диска;
- планета в наибольшей элонгации — в виде полукруга, обращённого выпуклостью к Солнцу;
- планета вблизи нижнего соединения — в виде очень узкого серпа;
- непосредственно в нижнем соединении планета не должна наблюдаться, поскольку к Земле обращено её неосвящённое полушарие.
Последовательность смены фаз Венеры
Именно такой порядок смены фаз имеет место в действительности, как впервые было установлено Галилеем.
Эмпирические доказательства движения Земли вокруг Солнца
Всё вышесказанное относится не только к гелиоцентрической системе, но и к комбинированной системе (наподобие системы Тихо Браге), в которой все планеты обращаются вокруг Солнца, которое, в свою очередь, движется вокруг Земли. Существуют, однако, доказательство движения Земли вокруг Солнца.
Годичные параллаксы звёзд
Ещё в древности было известно, что поступательное движение Земли должно приводить к параллактическому смещению звёзд. Из-за удалённости звёзд параллаксы впервые были найдены только в XIX веке (почти одновременно В. Я. Струве, Ф. Бесселем и Т. Гендерсоном), что явилось прямым (и долгожданным) доказательством движения Земли вокруг Солнца.
Годичные параллаксы звёзд
Параллакс тем меньше, чем дальше от нас звезда. Если вычислять угол параллакса p в секундах, а расстояние r в парсеках, то
Попятные движения планет имеют место по той же самой причине, что и годичные параллаксы звёзд, они могут быть названы годичными параллаксами планет.
Аберрация света звёзд
Из-за векторного сложения скорости света и орбитальной скорости Земли, при наблюдении звёзд телескоп приходится наклонять относительно линии Земля—звезда. Это явление (аберрация света) открыл и правильно объяснил в 1728 г. Джеймс Брадлей, занимавшийся поисками годичных параллаксов. Аберрация света оказалось первым наблюдательным подтверждением движения Земли вокруг Солнца и одновременно вторым доказательством конечности скорости света (после объяснения нерегулярности в движении спутников Юпитера Рёмером). В отличие от параллакса, угол аберрации не зависит от расстояния от звезды и целиком определяется орбитальной скоростью Земли. Для всех звёзд он равен одной и той же величине: 18".
Годичная вариация лучевых скоростей звёзд
Из-за орбитального движения Земли каждая звезда, расположенная вблизи плоскости эклиптики то приближается, то удаляется от Земли, что можно обнаружить с помощью спектральных наблюдений (эффекта Доплера). Аналогичный эффект наблюдается для температуры реликтового излучения.
Годичная вариация лучевых скоростей звёзд
История гелиоцентрической системы
Гелиоцентризм в Древней Греции
Идея движения Земли возникла в рамках пифагорейской школы. Пифагореец Филолай из Кротона обнародовал систему мира, в которой Земля является одной из планет; правда, речь пока шла об её вращении (за сутки) вокруг мистического Центрального Огня, а не Солнца. Аристотель отверг эту систему в том числе потому, что она предсказывала параллактическое смещение звёзд.
Менее спекулятивной была гипотеза Гераклида Понтийского, согласно которой Земля совершает суточное вращение вокруг своей оси. Кроме того, Гераклид, по видимому, предположил, что Меркурий и Венера обращаются вокруг Солнца и только с ним — вокруг Земли. Возможно, такого взгляда придерживался и Архимед, полагая обращающимся вокруг Солнца и Марс, орбита которого в этом случае должна была охватывать Землю, а не пролегать между нею и Солнцем, как в случае Меркурия и Венеры. Есть основания полагать, что у Гераклида была теория, согласно которой Земля, Солнце и планеты обращаются вокруг одной точки — центра планетной системы. По сообщению Теофраста, Платон на склоне своих лет сожалел, что он предоставил Земле центральное место во Вселенной, которое для неё не подходило.
Подлинно гелиоцентрическая система была предложена в начале III века до н. э. Аристархом Самосским. Скудная информация о гипотезе Аристарха дошла до нас через труды Архимеда, Плутарха и других авторов. Обычно считается, что Аристарх пришёл к гелиоцентризму исходя из установленного им факта, что Солнце по размерам много больше Земли (вычислению относительных размеров Земли, Луны и Солнца посвящён единственный дошедший до нас труд учёного). Естественно было предположить, что меньшее тело обращается вокруг большего, а не наоборот. Насколько была разработана гипотеза Аристарха, неизвестно, но Аристарх сделал важный вывод о том, что по сравнению с расстояниями до звёзд земная орбита является точкой, поскольку иначе должны были наблюдаться годичные параллаксы звёзд (вслед за Аристархом такую оценку расстояний до звёзд принимал и Архимед). Философ Клеанф призвал привлечь Аристарха к суду за то, что он двигает с места Землю («Очаг мира»).