Природа рентгеновских лучей
Рентгеновские лучи были обнаружены случайно в 1895 году знаменитым немецким физиком Вильгельмом Рентгеном. Он изучал катодные лучи в газоразрядной трубке низкого давления при высоком напряжении между ее электродами. Несмотря на то, что трубка находилась в черном ящике, Рентген обратил внимание, что флуоресцентный экран, случайно находившийся рядом, всякий раз светился, когда действовала трубка. Трубка оказалась источником излучения, которое могло проникать через бумагу, дерево, стекло и даже пластинку алюминия толщиной в полтора сантиметра.
Рентген определил, что газоразрядная трубка является источником нового вида невидимого излучения, обладающего большой проникающей способностью. Ученый не мог определить было ли это излучение потоком частиц или волн, и он решил дать ему название X-лучи. В последствие их назвали рентгеновскими лучами
Теперь известно, что X-лучи - вид электромагнитного излучения, имеющего меньшую длину волны, чем ультрафиолетовые электромагнитные волны. Длина волны X-лучей колеблется от 70 нм до 10-5нм. Чем короче длина волны X-лучей, тем больше энергия их фотонов и больше проникающая способность. X-лучи со сравнительно большой длиной волны (более 10 нм), называются мягкими. Длина волны 1 – 10нм характеризует жесткие X-лучи. Они обладают огромной проникающей способностью.
Получение рентгеновского излучения
Рентгеновские лучи возникают, когда быстрые электроны, или катодные лучи, сталкиваются со стенками или анодом газоразрядной трубки низкого давления. Современная рентгеновская трубка представляет собой вакуумизированный стеклянный баллон с расположенными в нем катодом и анодом. Разность потенциалов между катодом и анодом (антикатодом), достигает несколько сотен киловольт. Катод представляет собой вольфрамовую нить, подогреваемую электрическим током. Это приводит к испусканию катодом электронов в результате термоэлектронной эмиссии. Электроны ускоряются электрическим полем в рентгеновской трубке. Поскольку в трубке очень небольшое число молекул газа, то электроны по пути к аноду практически не теряют своей энергии. Они достигают анода с очень большой скоростью.
Рентгеновские лучи возникают всегда, когда движущиеся с высокой скоростью электроны тормозятся материалом анода. Большая часть энергии электронов рассеивается в виде тепла. Поэтому аноде необходимо искусственно охлаждать. Анод в рентгеновской трубке должен быть сделан из металла, имеющего высокую температуру плавления, например, из вольфрама.
Часть энергии, не рассеивающая в форме тепла, превращается в энергию электромагнитных волн (рентгеновские лучи). Таким образом, рентгеновские лучи являются результатом бомбардировки электронами вещества анода. Есть два типа рентгеновского излучения: тормозное и характеристическое.
Тормозное рентгеновское излучение
Тормозное рентгеновское излучение возникает при торможении электронов, движущихся с большой скоростью, электрическими полями атомов анода. Условия торможения отдельных электронов не одинаковы. В результате в энергию рентгеновского излучения переходят различные части их кинетической энергии.
Спектр тормозного рентгеновского излучения не зависит от природы вещества анода. Как известно, энергия фотонов рентгеновских лучей определяет их частоту и длину волны. Поэтому тормозное рентгеновское излучение не является монохроматическим. Оно характеризуется разнообразием длин волн, которое может быть представлено сплошным (непрерывным) спектром.
Рентгеновские лучи не могут иметь энергию большую, чем кинетическая энергия образующих их электронов. Наименьшая длина волны рентгеновского излучения соответствует максимальной кинетической энергии тормозящихся электронов. Чем больше разность потенциалов в рентгеновской трубке, тем меньшие длины волны рентгеновского излучения можно получить.
Характеристическое рентгеновское излучение
Характеристическое рентгеновское излучение имеет не сплошной, а линейчатый спектр. Этот тип излучения возникает, когда быстрый электрон, достигая анода, проникает во внутренние орбитали атомов и выбивает один из их электронов. В результате появляется свободное место, которое может быть заполнено другим электроном, спускающимся с одной из верхних атомных орбиталей. Такой переход электрона с более высокого на более низкий энергетический уровень вызывает рентгеновское излучение определенной дискретной длины волны. Поэтому характеристическое рентгеновское излучение имеет линейчатый спектр. Частота линий характеристического излучения полностью зависит от структуры электронных орбиталей атомов анода.
Линии спектра характеристического излучения разных химических элементов имеют одинаковый вид, поскольку структура их внутренних электронных орбитальных идентична. Но длина их волны и частота, благодаря энергетическим различиям между внутренними орбиталями тяжелых и легких атомов.
Частота линий спектра характеристического рентгеновского излучения изменяется в соответствие с атомным номером металла и определяется уравнением Мозли: v1/2=A(Z-B), где Z - атомный номер химического элемента, A и B - константы.
Первичные физические механизмы взаимодействия рентгеновского излучения с веществом
Для первичного взаимодействия между рентгеновским излучением и веществом характерно три механизма:
1. Когерентное рассеяние. Эта форма взаимодействия происходит, когда фотоны рентгеновских лучей имеют меньшую энергию, чем энергия связи электронов с ядром атома. В таком случае, энергия фотона оказывается не достаточной для освобождения электронов из атомов вещества. Фотон не поглощается атомом, но изменяет направление распространения. При этом длина волны рентгеновского излучения остается неизменной.
2. Фотоэлектрический эффект (фотоэффект). Когда фотон рентгеновского излучения достигает атома вещества, он может выбить один из электронов. Это происходит в том случае, если энергия фотона превышает энергию связи электрона с ядром. При этом фотон поглощается, а электрон высвобождается из атома. Если фотон несет большую энергию, чем необходимо для высвобождения электрона, он передаст оставшуюся энергию освобожденному электрону в форме кинетической энергии. Этот феномен, называемый фотоэлектрическим эффектом, происходит при поглощении относительно низкоэнергетического рентгеновского излучения.
Атом, который теряет один из своих электронов, становится положительным ионом. Продолжительность существования свободных электронов очень коротка. Они поглощаются нейтральными атомами, которые превращаются при этом в отрицательные ионы. Результатом фотоэлектрического эффекта является интенсивная ионизация вещества.
Если энергия фотона рентгеновского излучения меньше, чем энергия ионизации атомов, то атомы переходят в возбужденное состояние, но не ионизируются.
3. Некогерентное рассеяние (эффект Комптона). Этот эффект обнаружен американским физиком Комптоном. Он происходит, если вещество поглощает рентгеновские лучи малой длины волны. Энергия фотонов таких рентгеновских лучей всегда больше, чем энергия ионизации атомов вещества. Эффект Комптона является результатом взаимодействия высокоэнергетического фотона рентгеновских лучей с одним из электронов внешней оболочки атома, который имеет сравнительно слабую связь с атомным ядром.
Высокоэнергетический фотон передает электрону некоторую часть своей энергии. Возбужденный электрон высвобождается из атома. Оставшаяся часть энергии первоначального фотона излучается в виде фотона рентгеновского излучения большей длины волны под некоторым углом к направлению движения первичного фотона. Вторичный фотон может ионизировать другой атом и т.д. Эти изменения направления и длины волны рентгеновских лучей известны как эффект Комптона.
Некоторые эффекты взаимодействия рентгеновского излучения с веществом
Как было упомянуто выше, рентгеновские лучи способны возбуждать атомы и молекулы вещества. Это может вызывать флюоресценцию определенных веществ (например, сульфата цинка). Если параллельный пучок рентгеновских лучей направить на непрозрачные объекты, то можно наблюдать как лучи пройдут сквозь объект, поставив экран, покрытый флюоресцирующим веществом.
Флуоресцентный экран можно заменить фотографической пленкой. Рентгеновские лучи оказывают на фотографическую эмульсию такое же действие, как и свет. Оба метода используются в практической медицине.
Другим важным эффектом рентгеновского излучения является их ионизирующая способность. Это зависит от их длины волны и энергии. Этот эффект обеспечивает метод для измерения интенсивности рентгеновского излучения. Когда рентгеновские лучи проходят через ионизационную камеру, возникает электрический ток, величина которого пропорциональна интенсивности рентгеновского излучения.
Поглощение рентгеновского излучения веществом
При прохождении рентгеновских лучей через вещество их энергия уменьшается из-за поглощения и рассеяния. Ослабление интенсивности параллельного пучка рентгеновских лучей, проходящих через вещество, определяется законом Бугера: I = I0·e-μd, где I0 - начальная интенсивность рентгеновского излучения; I - интенсивность рентгеновских лучей, прошедших через слой вещества, d – толщина поглощающего слоя, μ - линейный коэффициент ослабления. Он равен сумме двух величин: t - линейного коэффициента поглощения и σ - линейного коэффициента рассеяния: μ = τ+σ
В экспериментах обнаружено, что линейный коэффициент поглощения зависит от атомного номера вещества и длины волны рентгеновских лучей:
τ = kρZ3λ3, где k - коэффициент прямой пропорциональности, ρ - плотность вещества, Z – атомный номер элемента, λ - длина волны рентгеновских лучей.
Зависимость от Z очень важна с практической точки зрения. Например, коэффициент поглощения костей, которые состоят из фосфата кальция, почти в 150 раз превышает коэффициент поглощения мягких тканей (Z=20 для кальция и Z=15 для фосфора). При прохождении рентгеновских лучей через тело человека, кости четко выделяются на фоне мышц, соединительной ткани и т.п.