Смекни!
smekni.com

Люминесценция. Оптические квантовые генераторы и их использование в медицине. Радиоспектроскопия. ЭПР и ЯМР (стр. 1 из 3)

Люминесценция. Оптические квантовые генераторы и их использование в медицине. Радиоспектроскопия. ЭПР и ЯМР

1. Спонтанное и индуцированное излучение атомами и молекулами.

Атомы, молекулы, ионы представляют собой квантовые системы, в которых электроны находятся на разных энергетических уровнях. В соответствие с принципом минимума энергии электроны размещаются, начиная от ближнего к ядру энергетического уровня (К-уровень). Такой уровень является нижним энергетическим уровнем, а затем заполняют остальные уровни, более далекие от ядра (высшие энергетические уровни).

Основное энергетическое состояние атома – это состояние, при котором, электроны расположены вокруг ядра в соответствие с принципом минимума энергии. В таком состоянии атомы могут находиться длительное время, поэтому в веществе большинство атомов находится именно в основном состоянии (распределение Больцмана).

Однако возможен скачкообразный переход с одного уровня на другой и атом переходит в возбужденное состояние. Для такого перехода атому необходимо сообщить энергию, равную разности энергий электронов на двух уровнях: E = E2 - E1. Время пребывания в возбужденном состоянии очень короткое - 10-8 c Переход атомов из возбужденного состояния в основное сопровождается излучением фотона энергии (в идеальном случае hν = E2 - E1).

Переход атома из возбужденного состояния может носить самопроизвольный (спонтанный) и индуцированный характер. Излучение, которое при этом возникает, соответственно называется спонтанным и индуцированным. При самопроизвольном переходе атома из возбужденного состояния в основное процесс носит случайный характер, т.е. случайны и время перехода и направление излучения фотона. Примером спонтанного излучения может служить люминесценция.

2. Люминесценция.

Люминесценция – спонтанное излучение тела, избыточное при данной температуре тела над тепловым излучением, длительность которого значительно превышает период световых волн. Период световых волн составляет 10-15, а длительность люминесценции как минимум - 10-10 c.

Вещества, которые могут люминесцировать, называются люминофорами. Для этого необходимо с помощью какой-либо энергии перевести их атомы в возбужденное состояние. А затем они некоторое время светятся.

В зависимости от способов возбуждения люминесценции существуют: фотолюминесценция, рентгенолюминесценция, радиолюминесценция, катодолюминесценция, электролюминесценция, хемилюминесценция, триболюминесценция.

По длительности свечения: флуоресценция (10-8) и фосфоресценция (10-3 и более).

Впервые люминесценцию количественно описал Стокс: длина волны люминесцентного излучения всегда больше, чем длина волны света, который вызвал люминесценцию. Спектр люминесценции сдвинут относительно спектра вызвавшего его света в сторону больших длин волн.

Объяснить закон Стокса можно на основе квантовой теории: энергия кванта, вызвавшего возбуждение, при поглощении его веществом, частично переходит в другие энергии hν0 = hν + ΔE. Поэтому hν < hν0, а λ > λ0.

Иногда возникает антистоксовская люминесценция, при которой λ < λ0. Это происходит если внешний квант поглощается уже возбужденной молекулой.

Основной энергетической характеристикой люминесценции является ее энергетический выход η - отношение энергии, которая люминофором излучается, к энергии, которую люминофор поглощает: η = E/E0.

Согласно закону Вавилова энергетический выход люминесценции сначала возрастает пропорционально возрастанию длины волны возбуждающего света, а потом резко падает:

Это объясняется так: η = E/E0 = hv/(hv0) = λ/λ0. То есть энергетический выход пропорционален длине волны возбуждающего света. Резкий спад энергетического выхода до нуля объясняется слишком маленькой энергией фотонов при больших длинах волн.

Применение люминесценции. Существует два направления применения люминесценции:

1. люминесцентный анализ – метод определения различных веществ по характерному для них свечению. Позволяет выявить вещества массой 10-10 г.

Существует люминесцентный макроанализ (позволяет выявлять различные вещества в макрообъектах) и микроанализ (используют люминесцентный микроскоп. В таком микроскопе имеются 2 светофильтра, первый – выделяет от источника света только сине-фиолетовый или УФ свет, которые заставляют изучаемые объекты светиться, а второй – перед объективом, пропускает только люминесцентное свечение, которое и видит исследователь).

2. Создание осветительной и регистрирующей аппаратуры (лампы дневного света, экран осциллографа).

3. Лазеры. Примером индуцированного излучения может служить лазерное излучение. (Напомним, что индуцированное излучение – такое излучение ЭМ волн, которое возникает при вынужденном переходе атома из возбуждённого состояния в основное).

Если на атом, находящийся в возбужденном состоянии подействовать фотоном энергии, то он поглотиться атомом уже не сможет (нет уровней, на которые может перейти электрон). В таком случае энергия внешнего фотона приводит к вынужденному переходу электрона на нижний энергетический уровень, который для данного электрона будет основным. При таком переходе образуется 2 фотона. При этом фотон, который появился вследствие индуцированного перехода, является точной копией фотона, инициировавшего переход атома из возбужденного состояния в основное. Он имеет ту же энергию и то же направление, что и вторичный фотон.

Учитывая, что в веществе много атомов, с помощью специальных приёмов можно получить лавину одинаковых вторичных фотонов и этим процессом можно управлять.

Эти специальные приёмы такие: 1. необходимо, чтобы как можно больше атомов в веществе находились в возбуждённом состоянии (т.е. с заполнением преимущественно высших энергетических уровней). Вещество, в котором большинство атомов находится в возбуждённом состоянии, называют веществом с инверсной заселенностью энергетических уровней. Инверсия в веществе достигается применением 1. мощного внешнего источника энергии.

2. Специальных веществ, для которых легче получить инверсную заселённость энергетических уровней. В их атомах есть, так называемые, метастабильные энергетические уровни, которые также являются высшими по отношению к основным уровням, однако время пребывания на них электронов относительно велико (10-2 - 10-4 с). Возможность существования таких уровней обусловлена тем, что переход электрона с такого уровня в основное состояние с излучением фотона маловероятен (запрещен правилами перехода).

3. Приспособления, которое обеспечит многократное прохождение фотонов через вещество с инверсной заселённостью энергетических уровней, вызывая как можно больше индуцированных переходов.

Все эти специальные приёмы были объединены в устройстве, которое носит название лазер.

Лазер – прибор для получения мощного электромагнитного излучения в оптическом диапазоне длин волн путем индуцированных переходов в квантовой системе.

Активная среда – это вещества, в которых создана инверсная заселенность энергетических уровней атомов. В роли активных сред используют кристаллы диэлектриков, полупроводники, жидкие растворы органических красителей, газовые смеси. Иногда их называют рабочим веществом лазера.

Инверсное состояние вещества активной среды создают 2 путями. Первый из них – используют вещества, атомам которых присущи метастабильные уровни (это способствует накоплению электронов на данном уровне). Второй – с помощью внешних факторов обеспечить максимальный переход атомов на высшие энергетические уровни.

Возбуждение активной среды называют накачкой (чаще всего оптическая накачка специальной газоразрядной лампой или с помощью газового электрического разряда). Накачка обеспечивает инверсную заселенность атомов и появление первичных фотонов. Вследствие спонтанных переходов электронов на низшие энергетические уровни появляются первичные фотоны, под действием которых образуют вторичные.

Оптический резонатор – система из 2 зеркал, имеющих общую оптическую ось, служащая для фокусировки вторичных фотонов. Для этого активную среду помещают между зеркалами резонатора. Фотоны движутся вдоль его оси, многократно пересекая активную среду вследствие многократного отражения от зеркал. При этом они приводят к появлению все большего числа индуцированных фотонов и образованию интенсивного, узко направленного потока фотонов (светового луча), который при определенной мощности пучка выходит из резонатора.

Путем изменения длины резонатора и коэффициента отражения зеркал обеспечивается получение монохроматического светового излучения.

В зависимости от природы активной среды различают такие типы лазеров: кристаллические, жидкостные, полупроводниковые, химические, газовые.

По режиму работы: импульсные и непрерывного действия. Отличаются также по форме, внешнему виду, размерам, системе накачки и т.д.

Прототип первого лазера был создан в 1954 году советскими учеными Прохоровым, Басовым и американским ученым Таунсом. Активной средой был аммиак. За это они получили в 1964 году Нобелевскую премию.

В 1960 году заработал первый рубиновый оптический квантовый генератор. В роли активной среды использовался рубин – оксид алюминия с небольшими примесями хрома, которые являются активными элементами. Накачка осуществлялась с помощью света мощной импульсной ксеноновой лампы. Такой лазер излучает красный свет с λ = 0, 69 мкм в импульсном режиме.