так как благодаря свойству медианы сумма абсолютных отклонений признака от ее величины всегда меньше, чем от любой другой.
В качестве относительной меры рассеивания, оценивающей вариацию центральной части совокупности, вычисляют относительное квартильное отклонение
, где — средний квартиль полусуммы разности третьего (или верхнего) квартиля ( ) и первого (или нижнего) квартиля ( ). .На практике чаще всего вычисляют коэффициент вариации. Нижней границей этого показателя является нуль, верхнего предела он не имеет, однако известно, что с увеличением вариации признака увеличивается и его значение. Коэффициент вариации является в известном смысле критерием однородности совокупности (в случае нормального распределения).
Рассчитаем коэффициент вариации на основе среднего квадратического отклонения для следующего примера. Расход сырья на единицу продукции составил (кг): по одной технологии
при , а по другой — при . Непосредственное сравнение величины средних квадратических отклонений могло бы привести к неверному представлению о том, что вариация расхода сырья по первой технологии интенсивнее, чем по второй ( . Относительная мера вариации ( позволяет сделать противоположный выводПример расчета показателей вариации
На этапе отбора кандидатов для участия в осуществлении сложного проекта фирма объявлила конкурс профессионалов. Распределение претендентов по опыту работы показало средующие результаты:
Вычислим средний производственный опыт работы, лет
Рассчитаем дисперсию по продолжительности опыта работы
Такой же результат получается, если использовать для расчета другую формулу расчета дисперсии
Вычислим среднее квадратическое отклонение, лет:
Определим коэффициент вариации, %:
Правило сложения дисперсий
Для оценки влияния факторов, определяющих вариацию, используют прием группировки: совокупность разбивают на группы, выбрав в качестве группировочного признака один из определяющих факторов. Тогда наряду с общей дисперсией, рассчитанной по всей совокупности, вычисляют внутигрупповую дисперсию (или среднюю из групповых) и межгрупповую дисперсию (или дисперсию групповых средних).
Общая дисперсия
характеризует вариацию признака во всей совокупности, сложившуюся под влиянием всех факторов и условий.Межгрупповая дисперсия
измеряет систематическую вариацию, обусловленную влиянием фактора, по которому произведена группировка: — групповые средние, — численность единиц i-й группыВнутригрупповая дисперсия оценивает вариацию признака, сложившуюся по влиянием других, неучитываемых в данном исследовании факторов и независящую от фактора группировки. Она определяется как средняя из групповых дисперсий.
— дисперсия i-ой группы.Все три дисперсии (
) связаны между собой следующим равенством, которое известно как правило сложения дисперсий:на этом соотношении строятся показатели, оценивающие влияние признака группировки на образование общей вариации. К ним относятся эмпирический коэффициент детерминации (
) и эмпирическое корреляционное отношение ( )Эмпирический коэффициент детерминации (
) характеризует долю межгрупоовой дисперсии в общей дисперсии:и показывает насколько вариация признака в совокупности обусловлена фактором группировки.
Эмпирическое корреляционное отношение (!!\eta = \sqrt{ \frac{\delta^2}{\sigma^2} }
оценивает тесноту связи между изучаемым и группировочным признаками. Предельными значениями
являются нуль и единица. Чем ближе к единице, тем теснее связь.Пример. Стоимость 1 кв.м общей площади (усл.ед) на рынке жилья по десяти 17-м домам улучшенной планировки составляла:
При этом известно, что первые пять домов были построены вблизи делового центра, а остальные — на значительном расстоянии от него.
Для рассчета общей дисперсии вычислим среднюю стоимость 1 кв.м. общей площади:
Общую дисперсию определим по формуле : .Вычислим среднюю стоимость 1 кв.м. и дисперсию по этому показателю для каждой группы домов, отличающихся месторасположением относительно центра города:
а) для домов, построенных вблизи центра:
б) для домов, построенных далеко от центра:
Вариация стоимости 1 кв.м. общей площади, вызванная изменением местоположения домов, определяется величиной межгрупповой дисперсии:
Вариация стоимости 1 кв.м. общей площади, обусловленная изменением остальных неучитываемых нами показателей, измеряется величиной внутригрупповой дисперсии
Найденные дисперссии в сумме дают величину общей дисперсии
Эмпирический коэффициент детерминации:
показывает, что дисперсия стоимости 1.кв.м. общей площади на рынке жилья на 81, 8% объясняется различиями в расположении новостроек по отношению к деловому центру и на 18, 2% — другими факторами.
Эмприческое корреляционное отношение
свидетельствует о существенном влиянии на стоимость жилья месторасположения домов.Правило сложения дисперсий для доли признака записывается так:
а три вида дисперсий доли для сгруппированных данных определяется по следующим формулам:
общая дисперсия:
Формулы межгрупповой и внутригрупповой дисперсий:
Характеристики формы распределения
Для получения представления о форме распределения используются показатели среднего уровня (средняя арифметическая, мода, медиана), показатели вариации, ассиметрии и эксцесса.
В симметричных распределениях средняя арифметическая, мода и медиана совпадают (
. Если это равенство нарушается — распределение ассиметрично.