Смекни!
smekni.com

Вопросы по курсу «МАТЕМАТИКА» для студентов 2 курса дневного отделения (стр. 2 из 6)

16 .Геометрический закон распределения Д.С.В.

С.В. Х имеет геометрическое распределение, если Pm=P{X=m}=q*m p, m=0,1,2,…, 0<p<1, q=1-p. Просуммировав бесконечно убывающую геометрическую прогрессию, легко убедиться в том, что сумма по m от 0 до бесконечности Pm=1: сумма по m от 0 до бесконечности Pm=сумма по m от 0 до бесконечности pq*m=p*1/1-q=1. Геометрическое распределение имеет С.В. Х, равная числу испытаний Бернулли до первого успеха с вероятностью успеха в единичном испытании р.

17.Определение непрерывной С.В. Плотность распределения и ее свойства.

С.В. Х называется непрерывной, если существует неотрицательная функция рх(х) такая, что при любых х функцию распределения Fx(x) можно представить в виде: Fx(x)=интеграл от –бесконечности до х px(y)dy. Рассматривают только такие С.В., для которых рх(х) непрерывна всюду, кроме, может быть, конечного числа точек. Плотностью распределения вероятностей непрерывной С.В. называют первую производную от функции распределения: f(x)=F’(x). Вероятность того, что Н.С.В. Х примет значение, принадлежащее интервалу (а,b), определяется равенством P(a<X<b)=интервал от а до b f(x)dx. Зная плотность распределения можно найти функцию распределения F(x)=интеграл от –бесконечности до х f(x)dx. Плотность распределения обладает следующими свойствами: 1) П.Р. неотрицательна, т.е. f(x)>=0. 2) Несобственный интеграл от плотности распределения в пределах от –бесконечности до бесконечности равен единице: интеграл от –бесконечности до бесконечности f(x)dx=1.

18.Математическое ожидание Н.С.В. и его свойства.

Мат. ожидание Н.С.В. Х, возможные значения которой принадлежат всей оси ОХ, определяется равенством: М(Х)=интеграл от –бесконечности до бесконечности хf(x)dx, где f(x) - плотность распределения С.В. Х. Предполагается, что интеграл сходится абсолютно. В частности, если все возможные значения принадлежат интервалу (а,b), то М(Х)=интеграл от а до b xf(x)dx. Все свойства мат. ожидания, указаны выше, для Д.С.В. Они сохраняются и для Н.С.В.

19.Дисперсия Н.С.В. и ее свойства.

Дисперсия Н.С.В. Х, возможные значения которой принадлежат всей оси ОХ, определяется равенством: D(X)=интеграл от –бесконечности до бесконечности [x-M(X)]*2f(x)dx, или равносильным равенством: D(X)=интеграл от –бесконечности до бесконечности x*2f(x)dx – [M(X)]*2. В частности, если все возможные значения х принадлежат интервалу (a,b),то D(X)=интервал от а до b [x – M(X)]*2f(x)dx,или D(X)=интеграл от a до b x*2f(x)dx – [M(X)]*2. Все свойства дисперсии Д.С.В. сохраняются и для Н.С.В.

20.Равномерный закон распределения.

Равномерным называют распределение вероятностей Н.С.В. Х, если на интервале (а,b), которому принадлежат все возможные значения Х, плотность сохраняет постоянное значение, а именно f(x)=1/(b-a); вне этого интервала f(x)=0. Нетрудно убедиться, что интеграл от –бесконечности до бесконечности р(х)dx=1. Для С.В., имеющей равномерное распределение , вероятность того, что С.В. примет значения из заданного интервала (х,х+дельта) прин. [a,b], не зависит от положения этого интервала на числовой оси и пропорциональна длине этого интервала дельта: P{x<X<x+дельта}=интеграл от х до х+дельта 1/b-adt=дельта/b-a. Функция распределения Х имеет вид: F(x)=0, при х<=a, x-a/b-a,при a<x<=b,1при х>b.

21.Показательный закон распределения.

Н.С.В. Х, принимающая неотрицательные значения, имеет показательное распределение с параметром лямда, если плотность распределения С.В. при x>=0 равна р(х)=лямда*е в степени - лямда*х и при x<0 р(х)=0. Функция распределения С.В. Х равна F(x)=интеграл от –бесконечности до х р(t)dt=0, при x<=0,1-е в степени –лямда*х при x>0.

22.Нормальный закон распределения.

Н.С.В. Х имеет нормальное распределение вероятностей с параметром а и сигма>0, если ее плотность распределения имеет вид: р(х)=1/(корень квадратный из 2пи *сигма) * е в степени –1/2*(x-a/сигма)*2. Если Х имеет нормальное распределение, то будем кратко записывать это в виде Х прибл. N(a,сигма). Так как фи(х)=1/(корень из 2пи)*е в степени –х*2/2 – плотность нормального закона распределения с параметрами а=0 и сигма=1, то функция Ф(х)=1/(корень из 2пи)* интеграл от –бесконечности до х е в степени –t*2/2dt, с помощью которой вычисляется вероятность P{a<=мюn-np/(корень из npq)<=b}, является функцией распределения нормального распределения с параметрами а=0, сигма=1.

23.Функция Лапласа, ее свойства; вероятность попадания в интервал для нормального распределения С.В.

СВ называется нормально распределенной, если ее плотность распределения имеет вид

f(x)=(1/s Ö (2p ))*e-(x-a)2/2s 2; s >0.

Функцией Лапласа называется функция вида(Z=x-a/s )

Ф(Х)=

.

Аргумент—переменная верхнего предела.

Св-ва;

Функция Ф(х)—нечетная, т.е. Ф(-х_=-Ф(х) Функция монотонно возрастает, т.е. х2>x1 следовательно, Ф(х2)>Ф(х1)

Ф(х2)=

—> Ф(х2)>Ф(х1)

3.Ф(+¥ )=0,5.Доказательство.

Ф(¥ )=

Ф-ция Ф(Х) возрастает и стремится к 0,5.

Вероятность попадания в интервал для НРСВ.

Пусть x —НРСВ с пар. а и s (s >0).

24.Неравенство Чебышева.

Если известна дисперсия С.В., то с ее помощью можно оценить вероятность отклонения этой величины на заданное значение от своего мат. ожидания, причем оценка вероятности отклонения зависит лишь от дисперсии. Соответствующую оценку вероятности дает неравенство Чебышева. Неравенство Чебышева является частным случаем более общего неравенства, позволяющего оценить вероятность события, состоящего в том, что С.В. Х превзойдет по модулю произвольное число t>0. P{|X – MX|>=t}<=1/t*2 M(X – MX)*2=1/t*2 DX – неравенство Чебышева. Оно справедливо для любых С.В., имеющих дисперсию; оценка вероятности в нем не зависит от закона распределения С.В. Х.

25.Теоремы Маркова и Чебышева.

Теорема Чебышева. Если последовательность попарно независимых С.В. Х1,Х2,Х3,…,Xn,… имеет конечные мат. ожидания и дисперсии этих величин равномерно ограничены (не превышают постоянного числа С), то среднее арифметическое С.В. сходится по вероятности к среднему арифметическому их мат. ожиданий, т.е. если эпселен – любое положительное число, то: lim при n стремящемся к бесконечности P(|1/n сумма по i от 1 до n Xi – 1/n сумма по i от 1 до n M(Xi)|<эпселен)=1. В частности, среднее арифметическое последовательности попарно независимых величин, дисперсии которых равномерно ограничены и которые имеют одно и тоже мат. ожидание а, сходится по вероятности к мат. ожиданию а, т.е. если эпселен – любое положительное число, то: lim при n стремящемся к бесконечности P(|1/n сумма по i от 1 до n Xi – a|<эпселен)=1. Теорема Маркова. P{|X|>=t}<=1/tM|X| - неравенство Маркова. Док-во: 1) Для Д.С.В. Х. Пусть Х – Д.С.В., Р{X=xi}=pi, i=1,2,3,…,сумма по i от 1 до бесконечности pi=1. Тогда вероятность события {|X|>=t} равна сумме вероятностей pi, для которых xi находится вне промежутка (-t,t). Очевидно, для всех xi, не принадлежащих промежутку (-t,t), имеет место неравенство |xi|/t>=1. Учитывая это неравенство получаем: P{|X|>=t}=сумма по i: |xi|>=t pi <=сумма по i:|xi|>=t |xi|/t pi<=сумма по i:|xi|>=t |xi|/t pi+сумма по i:|xi|<t |xi|/t*pi =1/t сумма по i от 1 до бесконечности |xi|*pi=1/t*M|X|. 2) Для Н.С.В. Х. Пусть Х – Н.С.В. с плотностью вероятности р(х). Вероятность того, что |X|>=t, равна сумме интегралов от плотности вероятности по промежуткам (-бесконечность, -t) и (t,бесконечность). На этих промежутках |x|/t*t>=1. Так как |x|/t*p(x)>=0, то интеграл от –t до t по |x|/t*p(x)dx>=0. Воспользовавшись формулой M|X|=интеграл от –бесконечности до бесконечности |x| p(x) dx, в результате преобразований получаем неравенство Маркова.

26.Центральная предельная теорема, следствия (теорема Муавра-Лапласа).

Локальная теорема Лапласа. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р(0<p<1), событие наступит ровно k раз (безразлично, в какой последовательности), приближенно равна (тем точнее, чем больше n). Pn(k)=1/(корень из npq)*фи(х). Здесь Фи(х)=1/(корень из 2пи)*е в степени –х*2/2, x=k – np/(корень из npq). Интегральная теорема Лапласа. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р(0<p<1), событие наступит не меньше k1 раз и не более k2 раз, приближенно равна: P(k1;k2)=Ф(х’’) – Ф(х’). Здесь Ф(х)=1/(корень из 2пи) * интеграл от0 до х е в степени –(z*2/2)dz – функция Лапласа, х’=(k1 – np)/(корень из npq), х’’=(k2 – np)/(корень из npq).

27.Двумерная С.В. Двумерная функция распределения и ее свойства.

Двумерной называют С.В. (Х,Y), возможные значения которой есть пары чисел (x,y). Составляющие Х и Y, рассматриваемые одновременно, образуют систему двух С.В. Дискретной называют двумерную величину, составляющие которой дискретны. Непрерывной называют двумерную величину, составляющие которой непрерывны. Законом распределения Д.С.В. называют соответствие между возможными значениями и их вероятностями. Функция распределения вероятностей Д.С.В. называют функцию F(X,Y), определяющую для каждой пары чисел (х,y) вероятность того, что Х примет значение, меньшее х, при этом Y примет значение, меньшее y: F(x,y)=P(X<x,Y<y). Свойства:1) Значения функции распределения удовлетворяют двойному неравенству: 0<=F(x,y)<=1. 2) Функция распределения есть неубывающая функция по каждому аргументу:F(x2,y)>=F(x1,y), если х2>x1. F(x,y2)>=F(x,y1), если y2>y1. 3) Имеют место предельные соотношения: 1) F(-бесконечность, у)=0, 2) F(x,-бесконечность)=0, 3) F(-бесконечность, -бесконечность)=0, 4) F(бесконечность, бесконечность)=1. 4) а) при у=бесконечность функция распределения системы становится функцией распределения составляющей Х: F(x,бесконечность)=F1(x). Б) при х=бесконечность функция распределения системы становится функцией распределения составляющей У: F(бесконечность, у)=F2(y).

28.Условные и безусловные законы распределения компонент двумерной С.В.

Условные. 1) Для дискретной двумерной С.В. Пусть составляющие X и Y дискретны и имеют соответственно следующие возможные значения: x1,x2,…,xn; y1,y2,…,ym. Условным распределением составляющей Х при Y=yj (j сохраняет одно и то же значение при всех возможных значениях Х) называют совокупность условных вероятностей p(x1|yj), p(x2|yj),…,p(xn|yj). Аналогично определяется условное распределение Y. Условные вероятности составляющих Х и Y вычисляют соответственно по формулам: p(xj|yi)=p(xi,yj)/p(yj), p(yj|xi)=p(xi,yj)/p(xi).