P(|a –
| < d ) = 2Ф( ) = 2Ф( ), где ; Ф( ) =По таблице для функции Лапласа по значению функции равной
находим значение аргумента ; ; Вместо обозначаем .; P(|a – | < d ) = P(-d < a - < d ) = P( - d < a < + d ) = j(
- d ; + d 36.Проверка гипотез. Ошибки первого и второго рода. Мощность критерия.В статистике рассматриваются гипотезы двух типов:
Параметрические – гипотезы о значении параметра известного распределения; Непараметрические – гипотезы о виде распределения.
Обычно выделяют основную гипотезу – нулевую (H0). Пример: математическое ожидание признака x , который распределен по нормальному закону и дисперсия его известна, а H0: M(x ) = a. Предполагаем, что известна дисперсия Конкурирующая гипотеза имеет вид: H1: M(x ) ¹ a;
H1: M(x ) > a, либо H1: M(x ) = a1. Для проверки гипотез используются критерии, и они представляют собой специальным образом подобранные СВ, k – точечный или приближенный закон, который известен.
Обычно предполагается, что если гипотеза Н0 выполняется, то вычисляемая по выборочным данным kнабл. Этого критерия и гипотеза Н0 принимается, если kнабл.Î (kкритич. левостор.; kкритич. правостор.) Если kнабл. попадает в критическую область (все остальные значения k Î (- ¥ ; kкритич. лев.) È (kкритич. прав. ; ¥ ), то гипотеза Н0 отвергается и принимается конкурирующая гипотеза Н1. При этом возможны ошибки двух типов: Первого рода: что гипотеза Н0 отвергается, в то время, как она верна. Вероятность этой ошибки: P(H1/H0) = a - уровень значимости критерия. Критерий подбирается так, чтобы a была как можно меньше. Второго рода: что отвергается гипотеза Н1, в то время, как она верна. b = P(H0/H1) Мощностью критерия – (1-b ) - вероятность попасть точке-выборке в критическое множество, когда верна конкурирующая гипотеза.
1-b = P(H1/H1)
37.Проверка гипотезы о равенстве генеральных средних при известных дисперсиях.
Признак x и h распределены нормально с известными дисперсиями.
Пусть по выборкам x 1, x 2, ... , x n объема n, h 1, h 2, ... , h m объема m, получены выборочные средние значения (
; ). Выдвигается гипотеза о равенстве генеральных средних: H0: M(x ) = M(h ); При конкурирующей гипотезе:H1: M(x ) ¹ M(h ); В качестве проверки гипотезы выбираем новую СВ
; - СВ:Д(Z)- дисперсия Д((
- )/s ( - )) =M(Z) = 0; Д(Z) = 1. Для того, чтобы выбрать Zкр. и при заданном уровне значимости a , определить принимается или не принимается основная гипотеза, найти вероятности.
P(0 < Z < Zкр.) + P(Z > Zкр. прав.) = ½ Ф(Zкр.) + a /2 = ½ Ô(Zкр. прав.) = ½ - a /2
Zнабл. =
|Zнабл.| < Zкр.прав. Þ Н0 |Zнабл.| > Zкр.прав. Þ Н0 отвергается.
38. Проверка гипотезы о равенстве генеральных средних при неизвестных дисперсиях.Пусть x и h нормально распределенные СВ, предполагается, что неизвестны, но равны между собой дисперсии. x 1, x 2, ... , x n h 1, h 2, ... , h m
; : Н0: М(x ) = М(h ) Н1: М(x ) ¹ М(h )Для проверки гипотезы Н0, вводится СВ t, которая представляет собой
Теоретическое обозначение признака; СВ Т распределена по закону Стъюдента, зависит от первого параметра, который называется числом степеней свободы (k).
k = n + m – 2 (по таблице для распределения Стъюдента при заданном значении k и уровне значимости a в зависимости от вида альтернативной и конкурирующей гипотезы, находятся либо односторонние tкр., либо двухсторонние tкр.).
Ткр. прав. = - Ткр. лев. | Тнабл. | < Ткр. двуст. Þ Н0 | Тнабл. | > Ткр. двуст. Þ Н0 отвергается.
42. Марковские случайные процессы. Размеченный граф состояний.
Предположим, что дана система S. Предп., что состояние этой сис-мы хар-ся параметрами состояний. Если состояние системы меняется во времени случайно, то говорят, что в сис-ме протекает случайный процесс. Сис-ма —аудитория. Для хар-ки состояния используется параметр—число студентов, тогда эта система с дискретными состояниями. Будем рассматривать системы с дискретными состояниями и непрерывным t: сис-ма мгновенно в произвольные сегменты t скачками меняет состояние. Если параметр t принимает дискретные значения (t=1,2,3,...), то происходит процесс с дискретным временем (случайная последовательность), если же t изменяется на некотором интервале, то процесс с непрерывным временем. Если случайные величины семейства принимают дискретные значения, то имеет место процесс с дискретными значениями, если же непрерывное, то с непрерывными значениями. Предположим, что рассматривается система с дискретными состояниями и непрерывным t. Пусть S1, S2,...,Sn —возможные состояния сис-мы. Для описания процесса, происх. в сис-ме, надо знать вер-ти каждого состояния на произвольный момент t. Р1(t)—вер-ть того, что в момент t сис-ма находится в 1-ом состоянии. Процесс, протекающий в системе, наз. марковским, если для него вероятность попасть в состояние Xi=Si в момент ti зависит не от всего прошлого, а лишь от состояния Xi-1=Si, в котором процесс был в предыдущий момент времени ti-1. Графом называется совокупность вершин и дуг, соединяющих эти вершины. Для описания процесса, протекающего в системе, удобно использовать размеченный граф состояний, в котором в кач-ве вершин исп-ся различные состояния системы, а в кач-ве дуг—стрелки, показ. возможные переходы за 1 шаг из состояния в состояние. При этом над каждой стрелкой указ. Плотность вероятности соответствующего перехода.
43. Система дифф. уравнений Колмогорова для вероятностей состояний.
Пусть дан марковский случайный процесс. Рi(t)—вер-ти состояний: i=1,n(все с чертой), тогда для Рi(t) выполняется следующее дифференциальное уравнение
d Рi(t)/dt=å ( от i<>k,k=1 до n) l ki* Рi(t)—å ( от j<>1,j=i до n) l ij*Pi(t); i=1,n(все с чертой) (1) Система из n уравнений , т.к. для любого момента t å ( от i=1 до n) Pi(t), то в системе (1) одно любое уравнение м-но отбросить. И, задав начальное условие на момент t=t0, P1(t0)=1, Pi(t0)=0, i=1,n( все с чертой).
В итоге м-но решить сис-му дифф. ур-ний и найти все вер-ти состояний Pi(t), i=1,n(все с чертой).
44. Предельные вероятности состояний. Нахождение предельных вероятностей.
Предположим, что дан марковский случайный процесс, тогда, используя уравнение Колмогорова, можно найти Рi(t); i =
Предельными или финальными вероятностями называют пределы
, если эти вероятности существуют, т.е. = Рi.Если эти предельные вероятности существуют, то в системе устанавливается стационарный режим, при котором состояние системы меняется случайным образом, но вероятность каждого состояния остается неизменной.